skip to main content
10.1145/3313831.3376219acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Honorable Mention

Interpreting Interpretability: Understanding Data Scientists' Use of Interpretability Tools for Machine Learning

Published:23 April 2020Publication History

ABSTRACT

Machine learning (ML) models are now routinely deployed in domains ranging from criminal justice to healthcare. With this newfound ubiquity, ML has moved beyond academia and grown into an engineering discipline. To that end, interpretability tools have been designed to help data scientists and machine learning practitioners better understand how ML models work. However, there has been little evaluation of the extent to which these tools achieve this goal. We study data scientists' use of two existing interpretability tools, the InterpretML implementation of GAMs and the SHAP Python package. We conduct a contextual inquiry (N=11) and a survey (N=197) of data scientists to observe how they use interpretability tools to uncover common issues that arise when building and evaluating ML models. Our results indicate that data scientists over-trust and misuse interpretability tools. Furthermore, few of our participants were able to accurately describe the visualizations output by these tools. We highlight qualitative themes for data scientists' mental models of interpretability tools. We conclude with implications for researchers and tool designers, and contextualize our findings in the social science literature.

Skip Supplemental Material Section

Supplemental Material

a92-kaur-presentation.mp4

mp4

36.2 MB

References

  1. Ashraf Abdul, Jo Vermeulen, Danding Wang, Brian Y. Lim, and Mohan Kankanhalli. 2018. Trends and Trajectories for Explainable, Accountable and Intelligible Systems: An HCI Research Agenda. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI'18). ACM, NY, NY, USA, Article 582, 18 pages. DOI: http://dx.doi.org/10.1145/3173574.3174156Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. David Alvarez-Melis, Hal Daumé, III, Jennifer Wortman Vaughan, and Hanna Wallach. 2019. Weight of Evidence as a Basis for Human-Oriented Explanations. arXiv preprint arXiv:1910.13503 (2019).Google ScholarGoogle Scholar
  3. Saleema Amershi, James Fogarty, and Daniel Weld. 2012. Regroup: Interactive Machine Learning for On-demand Group Creation in Social Networks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '12). ACM, NY, NY, USA, 21--30. DOI: http://dx.doi.org/10.1145/2207676.2207680Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Julia Angwin, Jeff Larson, Surya Mattu, and Kirchner Lauren. 2016. Machine Bias: There's software used across the country to predict future criminals. And it's biased against blacks. ProPublica, May 23 (2016), 2016. http://www.propublica.org/article/machine-bias-risk -assessments-in-criminal-sentencingGoogle ScholarGoogle Scholar
  5. Dean C Barnlund. 2017. A transactional model of communication. In Communication theory, Second edition, C. David Mortensen (Ed.). Routledge, 47--57.Google ScholarGoogle Scholar
  6. Victoria Bellotti and Keith Edwards. 2001. Intelligibility and Accountability: Human Considerations in Context-Aware Systems. Human--Computer Interaction 16, 2--4 (2001), 193--212. DOI: http://dx.doi.org/10.1207/S15327051HCI16234_05Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Virginia Braun and Victoria Clarke. 2012. Thematic analysis. In APA handbook of research methods in psychology, Vol 2: Research designs: Quantitative, qualitative, neuropsychological, and biological. American Psychological Association, Washington, DC, US, 57--71. DOI: http://dx.doi.org/10.1037/13620-004Google ScholarGoogle ScholarCross RefCross Ref
  8. Carrie J. Cai, Samantha Winter, David Steiner, Lauren Wilcox, and Michael Terry. 2019. "Hello AI": Uncovering the Onboarding Needs of Medical Practitioners for Human-AI Collaborative Decision-Making. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 104 (Nov. 2019), 24 pages. DOI: http://dx.doi.org/10.1145/3359206Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. 2017. Semantics derived automatically from language corpora contain human-like biases. Science 356, 6334 (2017), 183--186. DOI: http://dx.doi.org/10.1126/science.aal4230Google ScholarGoogle ScholarCross RefCross Ref
  10. Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. 2015. Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '15). ACM, NY, NY, USA, 1721--1730. DOI: http://dx.doi.org/10.1145/2783258.2788613Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Herbert H Clark, Robert Schreuder, and Samuel Buttrick. 1983. Common ground at the understanding of demonstrative reference. Journal of verbal learning and verbal behavior 22, 2 (1983), 245--258.Google ScholarGoogle ScholarCross RefCross Ref
  12. Juliet M. Corbin and Anselm Strauss. 1990. Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative sociology 13, 1 (1990), 3--21. DOI: http://dx.doi.org/10.1007/BF00988593Google ScholarGoogle ScholarCross RefCross Ref
  13. Janez Demsar, Blaz Zupan, Gregor Leban, and Tomaz Curk. 2004. Orange: From Experimental Machine Learning to Interactive Data Mining. In Knowledge Discovery in Databases: PKDD 2004, Jean-François Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 537--539. DOI: http://dx.doi.org/10.1007/978--3--540--30116--5_58Google ScholarGoogle ScholarCross RefCross Ref
  14. Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017).Google ScholarGoogle Scholar
  15. Finale Doshi-Velez, Mason Kortz, Ryan Budish, Chris Bavitz, Sam Gershman, David O'Brien, Stuart Schieber, James Waldo, David Weinberger, and Alexandra Wood. 2017. Accountability of AI under the law: The role of explanation. arXiv preprint arXiv:1711.01134 (2017).Google ScholarGoogle Scholar
  16. Paul Dourish. 2016. Algorithms and their others: Algorithmic culture in context. Big Data & Society 3, 2 (2016), 2053951716665128. DOI: http://dx.doi.org/10.1177/2053951716665128Google ScholarGoogle ScholarCross RefCross Ref
  17. Mary T Dzindolet, Hall P Beck, Linda G Pierce, and Lloyd A Dawe. 2001. A framework of automation use. Technical Report. Army Research Lab Aberdeen Proving Ground MD.Google ScholarGoogle Scholar
  18. Jerry Alan Fails and Dan R. Olsen, Jr. 2003. Interactive Machine Learning. In Proceedings of the 8th International Conference on Intelligent User Interfaces (IUI '03). ACM, NY, NY, USA, 39--45. DOI: http://dx.doi.org/10.1145/604045.604056Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. 2018. Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 80--89. DOI: http://dx.doi.org/10.1109/dsaa.2018.00018Google ScholarGoogle ScholarCross RefCross Ref
  20. Herbert P. Grice. 1975. Logic and Conversation. (1975), 41--58. DOI: http://dx.doi.org/10.1163/9789004368811_003Google ScholarGoogle ScholarCross RefCross Ref
  21. Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Human Mental Workload, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances in Psychology, Vol. 52. North-Holland, 139--183. DOI: http://dx.doi.org/10.1016/S0166--4115(08)62386--9Google ScholarGoogle ScholarCross RefCross Ref
  22. Trevor Hastie and Robert Tibshirani. 1987. Generalized Additive Models: Some Applications. J. Amer. Statist. Assoc. 82, 398 (1987), 371--386. DOI: http://dx.doi.org/10.1080/01621459.1987.10478440Google ScholarGoogle ScholarCross RefCross Ref
  23. Fred Hohman, Andrew Head, Rich Caruana, Robert DeLine, and Steven M. Drucker. 2019. Gamut: A Design Probe to Understand How Data Scientists Understand Machine Learning Models. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM, NY, NY, USA, Article 579, 13 pages. DOI: http://dx.doi.org/10.1145/3290605.3300809Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jiun-Yin Jian, Ann M. Bisantz, and Colin G. Drury. 2000. Foundations for an Empirically Determined Scale of Trust in Automated Systems. International Journal of Cognitive Ergonomics 4, 1 (2000), 53--71. DOI: http://dx.doi.org/10.1207/S15327566IJCE0401_04Google ScholarGoogle ScholarCross RefCross Ref
  25. Jongbin Jung, Connor Concannon, Ravi Shroff, Sharad Goel, and Daniel G Goldstein. 2017. Simple rules for complex decisions. Available at SSRN 2919024 (2017). http://dx.doi.org/10.2139/ssrn.2919024Google ScholarGoogle ScholarCross RefCross Ref
  26. Mayank Kabra, Alice A Robie, Marta Rivera-Alba, Steven Branson, and Kristin Branson. 2013. JAABA: interactive machine learning for automatic annotation of animal behavior. Nature methods 10, 1 (2013), 64--67. DOI: http://dx.doi.org/10.1038/nmeth.2281Google ScholarGoogle ScholarCross RefCross Ref
  27. Daniel Kahneman. 2011. Thinking, fast and slow. Macmillan.Google ScholarGoogle Scholar
  28. Daniel Kahneman, Stewart Paul Slovic, Paul Slovic, and Amos Tversky. 1982. Judgment under uncertainty: Heuristics and biases. Cambridge university press.Google ScholarGoogle Scholar
  29. Matthew Kay, Cynthia Matuszek, and Sean A. Munson. 2015. Unequal Representation and Gender Stereotypes in Image Search Results for Occupations. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15). ACM, NY, NY, USA, 3819--3828. DOI: http://dx.doi.org/10.1145/2702123.2702520Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 3146--3154. http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  31. Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Examples are not enough, learn to criticize! Criticism for Interpretability. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 2280--2288. http://papers.nips.cc/paper/6300-examples-are-not-enough-learn-to-criticize-criticism-for-interpretability.pdfGoogle ScholarGoogle Scholar
  32. Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and Rory Sayres. 2018. Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV). In Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research), Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR, Stockholmsmässan, Stockholm Sweden, 2668--2677. http://proceedings.mlr.press/v80/kim18d.htmlGoogle ScholarGoogle Scholar
  33. Rafal Kocielnik, Saleema Amershi, and Paul N. Bennett. 2019. Will You Accept an Imperfect AI?: Exploring Designs for Adjusting End-user Expectations of AI Systems. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM, NY, NY, USA, Article 411, 14 pages. DOI: http://dx.doi.org/10.1145/3290605.3300641Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. 2015. Principles of Explanatory Debugging to Personalize Interactive Machine Learning. In Proceedings of the 20th International Conference on Intelligent User Interfaces (IUI '15). ACM, NY, NY, USA, 126--137. DOI: http://dx.doi.org/10.1145/2678025.2701399Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Todd Kulesza, Simone Stumpf, Margaret Burnett, and Irwin Kwan. 2012. Tell Me More?: The Effects of Mental Model Soundness on Personalizing an Intelligent Agent. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '12). ACM, NY, NY, USA, 1--10. DOI: http://dx.doi.org/10.1145/2207676.2207678Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan, Sam Gershman, Been Kim, and Finale Doshi-Velez. 2019. Human Evaluation of Models Built for Interpretability. In AAAI Conference on Human Computation and Crowdsourcing (HCOMP).Google ScholarGoogle Scholar
  37. Himabindu Lakkaraju and Osbert Bastani. 2020. " How do I fool you?": Manipulating User Trust via Misleading Black Box Explanations. In Proceedings of the 2020 AAAI/ACM Conference on AI, Ethics, and Society (AIES '20). ACM, NY, NY, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. David B. Leake. 1991. Goal-based explanation evaluation. Cognitive Science 15, 4 (1991), 509--545. DOI: http://dx.doi.org/10.1016/0364-0213(91)80017-YGoogle ScholarGoogle ScholarCross RefCross Ref
  39. Zachary C Lipton. 2016. The mythos of model interpretability. arXiv preprint arXiv:1606.03490 (2016).Google ScholarGoogle Scholar
  40. Stine Lomborg and Patrick Heiberg Kapsch. 2019. Decoding algorithms. Media, Culture & Society (2019). DOI: http://dx.doi.org/10.1177/0163443719855301Google ScholarGoogle ScholarCross RefCross Ref
  41. Tania Lombrozo. 2006. The structure and function of explanations. Trends in Cognitive Sciences 10, 10 (2006), 464--470. DOI: http://dx.doi.org/10.1016/j.tics.2006.08.004Google ScholarGoogle ScholarCross RefCross Ref
  42. Alexandra L' heureux, Katarina Grolinger, Hany F Elyamany, and Miriam AM Capretz. 2017. Machine learning with big data: Challenges and approaches. IEEE Access 5 (2017), 7776--7797. DOI: http://dx.doi.org/10.1109/ACCESS.2017.2696365Google ScholarGoogle ScholarCross RefCross Ref
  43. Scott M Lundberg, Gabriel G Erion, and Su-In Lee. 2018. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888 (2018).Google ScholarGoogle Scholar
  44. Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 4765--4774. http://papers.nips.cc/paper/7062-a-unified-approach -to-interpreting-model-predictions.pdfGoogle ScholarGoogle Scholar
  45. Prashan Madumal, Tim Miller, Frank Vetere, and Liz Sonenberg. 2018. Towards a Grounded Dialog Model for Explainable Artificial Intelligence. In First international workshop on socio-cognitive systems at IJCAI 2018. https://arxiv.org/abs/1806.08055Google ScholarGoogle Scholar
  46. Bertram F Malle. 2006. How the mind explains behavior: Folk explanations, meaning, and social interaction. Mit Press.Google ScholarGoogle Scholar
  47. Tim Miller. 2018. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence (2018).Google ScholarGoogle Scholar
  48. Tim Miller, Piers Howe, and Liz Sonenberg. 2017. Explainable AI: Beware of inmates running the asylum or: How I learnt to stop worrying and love the social and behavioural sciences. In IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI).Google ScholarGoogle Scholar
  49. Michael Muller, Ingrid Lange, Dakuo Wang, David Piorkowski, Jason Tsay, Q. Vera Liao, Casey Dugan, and Thomas Erickson. 2019. How Data Science Workers Work with Data: Discovery, Capture, Curation, Design, Creation. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM, NY, NY, USA, Article 126, 15 pages. DOI: http://dx.doi.org/10.1145/3290605.3300356Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. 2019. InterpretML: A Unified Framework for Machine Learning Interpretability. arXiv preprint arXiv:1909.09223 (2019).Google ScholarGoogle Scholar
  51. Donald A Norman. 2014. Some observations on mental models. In Mental models. Psychology Press, 15--22.Google ScholarGoogle Scholar
  52. Raja Parasuraman, Robert Molloy, and Indramani L. Singh. 1993. Performance Consequences of Automation-Induced 'Complacency'. The International Journal of Aviation Psychology 3, 1 (1993), 1--23. DOI: http://dx.doi.org/10.1207/s15327108ijap0301_1Google ScholarGoogle ScholarCross RefCross Ref
  53. Kayur Patel, James Fogarty, James A. Landay, and Beverly Harrison. 2008. Investigating Statistical Machine Learning As a Tool for Software Development. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '08). ACM, NY, NY, USA, 667--676. DOI: http://dx.doi.org/10.1145/1357054.1357160Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Forough Poursabzi-Sangdeh, Daniel G Goldstein, Jake M Hofman, Jennifer Wortman Vaughan, and Hanna Wallach. 2018. Manipulating and measuring model interpretability. arXiv preprint arXiv:1802.07810 (2018).Google ScholarGoogle Scholar
  55. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16). ACM, NY, NY, USA, 1135--1144. DOI: http://dx.doi.org/10.1145/2939672.2939778Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Cynthia Rudin. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence 1, 5 (2019), 206--215. DOI: http://dx.doi.org/10.1038/s42256-019-0048-xGoogle ScholarGoogle ScholarCross RefCross Ref
  57. Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV). 618--626.Google ScholarGoogle ScholarCross RefCross Ref
  58. Lloyd S Shapley. 1997. A value for n-person games. Classics in game theory (1997), 69.Google ScholarGoogle Scholar
  59. Ben R Slugoski, Mansur Lalljee, Roger Lamb, and Gerald P Ginsburg. 1993. Attribution in conversational context: Effect of mutual knowledge on explanation-giving. European Journal of Social Psychology 23, 3 (1993), 219--238. DOI: http://dx.doi.org/10.1002/ejsp.2420230302Google ScholarGoogle ScholarCross RefCross Ref
  60. Simone Stumpf, Vidya Rajaram, Lida Li, Weng-Keen Wong, Margaret Burnett, Thomas Dietterich, Erin Sullivan, and Jonathan Herlocker. 2009. Interacting meaningfully with machine learning systems: Three experiments. International Journal of Human-Computer Studies 67, 8 (2009), 639--662. DOI: http://dx.doi.org/10.1016/j.ijhcs.2009.03.004Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Sarah Tan, Rich Caruana, Giles Hooker, Paul Koch, and Albert Gordo. 2018. Learning global additive explanations for neural nets using model distillation. arXiv preprint arXiv:1801.08640 (2018).Google ScholarGoogle Scholar
  62. Richard Tomsett, Dave Braines, Dan Harborne, Alun Preece, and Supriyo Chakraborty. 2018. Interpretable to whom? A role-based model for analyzing interpretable machine learning systems. arXiv preprint arXiv:1806.07552 (2018).Google ScholarGoogle Scholar
  63. Byron C. Wallace, Kevin Small, Carla E. Brodley, Joseph Lau, and Thomas A. Trikalinos. 2012. Deploying an Interactive Machine Learning System in an Evidence-based Practice Center: Abstrackr. In Proceedings of the 2Nd ACM SIGHIT International Health Informatics Symposium (IHI '12). ACM, NY, NY, USA, 819--824. DOI: http://dx.doi.org/10.1145/2110363.2110464Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Danding Wang, Qian Yang, Ashraf Abdul, and Brian Y. Lim. 2019. Designing Theory-Driven User-Centric Explainable AI. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM, NY, NY, USA, Article 601, 15 pages. DOI: http://dx.doi.org/10.1145/3290605.3300831Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Daniel S. Weld and Gagan Bansal. 2019. The Challenge of Crafting Intelligible Intelligence. Commun. ACM 62, 6 (May 2019), 70--79. DOI: http://dx.doi.org/10.1145/3282486Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Qian Yang, Nikola Banovic, and John Zimmerman. 2018a. Mapping Machine Learning Advances from HCI Research to Reveal Starting Places for Design Innovation. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI'18). ACM, NY, NY, USA, Article 130, 11 pages. DOI: http://dx.doi.org/10.1145/3173574.3173704Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Qian Yang, Alex Scuito, John Zimmerman, Jodi Forlizzi, and Aaron Steinfeld. 2018b. Investigating How Experienced UX Designers Effectively Work with Machine Learning. In Proceedings of the 2018 Designing Interactive Systems Conference (DIS '18). ACM, NY, NY, USA, 585--596. DOI: http://dx.doi.org/10.1145/3196709.3196730Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Jiaming Zeng, Berk Ustun, and Cynthia Rudin. 2017. Interpretable classification models for recidivism prediction. Journal of the Royal Statistical Society: Series A (Statistics in Society) 180, 3 (2017), 689--722. DOI: http://dx.doi.org/10.1111/rssa.12227Google ScholarGoogle ScholarCross RefCross Ref
  69. Jichen Zhu, Antonios Liapis, Sebastian Risi, Rafael Bidarra, and G. Michael Youngblood. 2018. Explainable AI for designers: A human-centered perspective on mixed-initiative co-creation. In 2018 IEEE Conference on Computational Intelligence and Games (CIG). IEEE, 1--8. DOI: http://dx.doi.org/10.1109/CIG.2018.8490433Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Interpreting Interpretability: Understanding Data Scientists' Use of Interpretability Tools for Machine Learning

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
        April 2020
        10688 pages
        ISBN:9781450367080
        DOI:10.1145/3313831

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 April 2020

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate6,199of26,314submissions,24%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format