skip to main content
10.1145/3313831.3376366acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Open Access

PhysioSkin: Rapid Fabrication of Skin-Conformal Physiological Interfaces

Authors Info & Claims
Published:23 April 2020Publication History

ABSTRACT

Advances in rapid prototyping platforms have made physiological sensing accessible to a wide audience. However, off-the-shelf electrodes commonly used for capturing biosignals are typically thick, non-conformal and do not support customization. We present PhysioSkin, a rapid, do-it-yourself prototyping method for fabricating custom multi-modal physiological sensors, using commercial materials and a commodity desktop inkjet printer. It realizes ultrathin skin-conformal patches (~1μm) and interactive textiles that capture sEMG, EDA and ECG signals. It further supports fabricating devices with custom levels of thickness and stretchability. We present detailed fabrication explorations on multiple substrate materials, functional inks and skin adhesive materials. Informed from the literature, we also provide design recommendations for each of the modalities. Evaluation results show that the sensor patches achieve a high signal-to-noise ratio. Example applications demonstrate the functionality and versatility of our approach for prototyping a next generation of physiological devices that intimately couple with the human body.

Skip Supplemental Material Section

Supplemental Material

paper239vf.mp4

mp4

85.1 MB

paper239pv.mp4

mp4

10 MB

References

  1. 2020. Apple Watch Series 5 ECG/Heart Rate. https://www.apple.com/apple-watch-series-5/health/. (2020). Accessed: 2020-01-08.Google ScholarGoogle Scholar
  2. 2020. Hexoskin Health Sensors and AI. http://https://www.hexoskin.com/. (2020). Last Accessed: 2020-01-08.Google ScholarGoogle Scholar
  3. Gizem Acar, Ozberk Ozturk, and Murat Kaya Yapici. 2018. Wearable Graphene Nanotextile Embedded Smart Armband for Cardiac Monitoring. In 2018 IEEE SENSORS. IEEE, 1--4.Google ScholarGoogle Scholar
  4. Valentina Agostini and Marco Knaflitz. 2011. An algorithm for the estimation of the signal-to-noise ratio in surface myoelectric signals generated during cyclic movements. IEEE Transactions on Biomedical Engineering 59, 1 (2011), 219--225.Google ScholarGoogle ScholarCross RefCross Ref
  5. Christoph Amma, Thomas Krings, Jonas Böer, and Tanja Schultz. 2015. Advancing muscle-computer interfaces with high-density electromyography. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 929--938.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. AS Anusha, SP Preejith, Tony J Akl, Jayaraj Joseph, and Mohanasankar Sivaprakasam. 2018. Dry Electrode Optimization for Wrist-based Electrodermal Activity Monitoring. In 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE, 1--6.Google ScholarGoogle Scholar
  7. Marco Barbero, Roberto Merletti, and Alberto Rainoldi. 2012. Atlas of muscle innervation zones: understanding surface electromyography and its applications. Springer Science & Business Media.Google ScholarGoogle Scholar
  8. Sharon Baurley, Philippa Brock, Erik Geelhoed, and Andrew Moore. 2007. Communication-Wear: user feedback as part of a co-design process. In International Workshop on Haptic and Audio Interaction Design. Springer, 56--68.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Guillermo Bernal, Tao Yang, Abhinandan Jain, and Pattie Maes. 2018. PhysioHMD: A Conformable, Modular Toolkit for Collecting Physiological Data from Head-mounted Displays. In Proceedings of the 2018 ACM International Symposium on Wearable Computers (ISWC '18). ACM, NY, NY, USA, 160--167. DOI: http://dx.doi.org/10.1145/3267242.3267268Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Paolo Bonato, Tommaso D'Alessio, and Marco Knaflitz. 1998. A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait. IEEE Transactions on biomedical engineering 45, 3 (1998), 287--299.Google ScholarGoogle ScholarCross RefCross Ref
  11. Wolfram Boucsein. 2012. Electrodermal activity. Springer Science & Business Media.Google ScholarGoogle Scholar
  12. Varun Perumal C and Daniel Wigdor. 2015. Printem: Instant Printed Circuit Boards with Standard Office Printers Inks. In Proceedings of the 28th Annual ACM Symposium on User Interface Software Technology (UIST '15). Association for Computing Machinery, New York, NY, USA, 243--251. DOI: http://dx.doi.org/10.1145/2807442.2807511Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Andrew Carek and Christian Holz. 2018. Naptics: Convenient and Continuous Blood Pressure Monitoring during Sleep. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 3 (2018), 96.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C. Cochrane, C. Hertleer, and A. Schwarz-Pfeiffer. 2016. Smart textiles in health: An overview. In Smart Textiles and their Applications, Vladan Koncar (Ed.). Woodhead Publishing, Oxford, 9 -- 32. DOI: http://dx.doi.org/https://doi.org/10.1016/B978-0-08--100574--3.00002--3Google ScholarGoogle ScholarCross RefCross Ref
  15. Mary Boudreau Conover. 2002. Understanding electrocardiography. Elsevier Health Sciences.Google ScholarGoogle Scholar
  16. Artem Dementyev, Javier Hernandez, Inrak Choi, Sean Follmer, and Joseph Paradiso. 2018. Epidermal Robots: Wearable Sensors That Climb on the Skin. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 3 (2018), 102.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Artem Dementyev and Christian Holz. 2017. DualBlink: a wearable device to continuously detect, track, and actuate blinking for alleviating dry eyes and computer vision syndrome. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 1 (2017), 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Artem Dementyev, Hsin-Liu Cindy Kao, and Joseph A Paradiso. 2015. Sensortape: Modular and programmable 3d-aware dense sensor network on a tape. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. ACM, 649--658.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Willem Einthoven, G Fahr, and A De Waart. 1913. "U about the direction and the manifest size of the potential fluctuations in the human heart and about the influence of the heart situation on the shape of the electrocardiogram. Pflügler's Archive European Journal of Physiology 150, 6 (1913), 275--315.Google ScholarGoogle ScholarCross RefCross Ref
  20. Omar J Escalona, Louise McFrederick, Maira Borges, Pedro Linares, Ricardo Villegas, Gilberto I Perpiñan, James McLaughlin, and David McEneaney. 2017. Wrist and arm body surface bipolar ECG leads signal and sensor study for long-term rhythm monitoring. In 2017 Computing in Cardiology (CinC). IEEE, 1--4.Google ScholarGoogle Scholar
  21. Laura M Ferrari, Sudha Sudha, Sergio Tarantino, Roberto Esposti, Francesco Bolzoni, Paolo Cavallari, Christian Cipriani, Virgilio Mattoli, and Francesco Greco. 2018. Ultraconformable temporary tattoo electrodes for electrophysiology. Advanced Science 5, 3 (2018), 1700771.Google ScholarGoogle ScholarCross RefCross Ref
  22. T Finni, Min Hu, P Kettunen, T Vilavuo, and S Cheng. 2007. Measurement of EMG activity with textile electrodes embedded into clothing. Physiological measurement 28, 11 (2007), 1405.Google ScholarGoogle Scholar
  23. Don C Fowles, Margaret J Christie, Robert Edelberg, William W Grings, David T Lykken, and Peter H Venables. 1981. Publication recommendations for electrodermal measurements. Psychophysiology 18, 3 (1981), 232--239.Google ScholarGoogle ScholarCross RefCross Ref
  24. Hossein Ghapanchizadeh, Siti A Ahmad, and Asnor Juraiza Ishak. 2015. Recommended surface EMG electrode position for wrist extension and flexion. In 2015 IEEE Student Symposium in Biomedical Engineering & Sciences (ISSBES). IEEE, 108--112.Google ScholarGoogle ScholarCross RefCross Ref
  25. Stephen Gilroy, Julie Porteous, Fred Charles, and Marc Cavazza. 2012. PINTER: Interactive Storytelling with Physiological Input. In Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces (IUI '12). ACM, NY, NY, USA, 333--334. DOI: http://dx.doi.org/10.1145/2166966.2167039Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Daniel Groeger and Jürgen Steimle. 2019. LASEC: Instant Fabrication of Stretchable Circuits Using a Laser Cutter. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). ACM, NY, NY, USA, Article 699, 14 pages. DOI: http://dx.doi.org/10.1145/3290605.3300929Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Peter A Haddad, Amir Servati, Saeid Soltanian, Frank Ko, and Peyman Servati. 2017. Effects of flexible dry electrode design on electrodermal activity stimulus response detection. IEEE Transactions on Biomedical Engineering 64, 12 (2017), 2979--2987.Google ScholarGoogle ScholarCross RefCross Ref
  28. Manne Hannula, H Hinkula, and J Jauhiainen. 2008. Development and evaluation of one arm electrode based ECG measurement system. In 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics. Springer, 234--237.Google ScholarGoogle ScholarCross RefCross Ref
  29. Hermie J Hermens, Bart Freriks, Catherine Disselhorst-Klug, and Günter Rau. 2000. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology 10, 5 (oct 2000), 361--374. DOI: http://dx.doi.org/10.1016/S1050--6411(00)00027--4Google ScholarGoogle ScholarCross RefCross Ref
  30. Rafael E Herrera, James T Cain, EG Cape, and Gerard J Boyle. 1996. A high resolution ECG tool for detection of atrial and ventricular late potentials. In Computers in Cardiology 1996. IEEE, 629--632.Google ScholarGoogle Scholar
  31. Christian Holz and Edward J Wang. 2017. Glabella: Continuously sensing blood pressure behavior using an unobtrusive wearable device. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017), 58.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Xian Huang, Yuhao Liu, Kaile Chen, Woo-Jung Shin, Ching-Jui Lu, Gil-Woo Kong, Dwipayan Patnaik, Sang-Heon Lee, Jonathan Fajardo Cortes, and John A Rogers. 2014. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10, 15 (2014), 3083--3090.Google ScholarGoogle ScholarCross RefCross Ref
  33. Phil Jevon. 2010. Procedure for recording a standard 12-lead electrocardiogram. British Journal of Nursing 19, 10 (2010), 649--651.Google ScholarGoogle ScholarCross RefCross Ref
  34. Hsin-Liu Cindy Kao, Christian Holz, Asta Roseway, Andres Calvo, and Chris Schmandt. 2016. DuoSkin: rapidly prototyping on-skin user interfaces using skin-friendly materials. In Proceedings of the 2016 ACM International Symposium on Wearable Computers. ACM, 16--23.Google ScholarGoogle Scholar
  35. Yoshihiro Kawahara, Steve Hodges, Benjamin S. Cook, Cheng Zhang, and Gregory D. Abowd. 2013. Instant Inkjet Circuits: Lab-based Inkjet Printing to Support Rapid Prototyping of UbiComp Devices. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp '13). ACM, NY, NY, USA, 363--372. DOI: http://dx.doi.org/10.1145/2493432.2493486Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Arshad Khan, Joan Sol Roo, Tobias Kraus, and Jürgen Steimle. 2011. Soft Inkjet Circuits: Rapid Multi-Material Fabrication of Soft Circuits using a Commodity Inkjet Printer. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST '19). ACM, NY, NY, USA, 10.Google ScholarGoogle Scholar
  37. Jeonghyun Kim, Philipp Gutruf, Antonio M Chiarelli, Seung Yun Heo, Kyoungyeon Cho, Zhaoqian Xie, Anthony Banks, Seungyoung Han, Kyung-In Jang, Jung Woo Lee, and others. 2017. Oximetry: Miniaturized Battery-Free Wireless Systems for Wearable Pulse Oximetry (Adv. Funct. Mater. 1/2017). Advanced Functional Materials 27, 1 (2017).Google ScholarGoogle Scholar
  38. Jie Liu, Dongwen Ying, William Z Rymer, and Ping Zhou. 2015. Robust muscle activity onset detection using an unsupervised electromyogram learning framework. PloS one 10, 6 (2015), e0127990.Google ScholarGoogle Scholar
  39. Joanne Lo, Doris Jung Lin Lee, Nathan Wong, David Bui, and Eric Paulos. 2016. Skintillates: Designing and creating epidermal interactions. In Proceedings of the 2016 ACM Conference on Designing Interactive Systems. ACM, 853--864.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Johan Löfhede, Fernando Seoane, and Magnus Thordstein. 2012. Textile electrodes for EEG recording-A pilot study. Sensors 12, 12 (2012), 16907--16919.Google ScholarGoogle ScholarCross RefCross Ref
  41. Eric Markvicka, Guanyun Wang, Yi-Chin Lee, Gierad Laput, Carmel Majidi, and Lining Yao. 2019. ElectroDermis: Fully Untethered, Stretchable, and Highly-Customizable Electronic Bandages. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19). Association for Computing Machinery, New York, NY, USA, Article Paper 632, 10 pages. DOI: http://dx.doi.org/10.1145/3290605.3300862Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. David A Mellis, Sam Jacoby, Leah Buechley, Hannah Perner-Wilson, and Jie Qi. 2013. Microcontrollers as material: crafting circuits with paper, conductive ink, electronic components, and an untoolkit. In Proceedings of the 7th International Conference on Tangible, Embedded and Embodied Interaction. ACM, 83--90.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Roberto Merletti, L Lo Conte, Elena Avignone, and Piero Guglielminotti. 1999. Modeling of surface myoelectric signals. I. Model implementation. IEEE transactions on biomedical engineering 46, 7 (1999), 810--820.Google ScholarGoogle ScholarCross RefCross Ref
  44. Roberto Merletti, Philip A Parker, and Philip J Parker. 2004. Electromyography: physiology, engineering, and non-invasive applications. Vol. 11. John Wiley & Sons.Google ScholarGoogle Scholar
  45. Steven Nagels, Raf Ramakers, Kris Luyten, and Wim Deferme. 2018. Silicone Devices: A Scalable DIY Approach for Fabricating Self-Contained Multi-Layered Soft Circuits Using Microfluidics. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 188.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Aditya Shekhar Nittala, Klaus Kruttwig, Jaeyeon Lee, Roland Bennewitz, Eduard Arzt, and Jürgen Steimle. 2019. Like a Second Skin: Understanding How Epidermal Devices Affect Human Tactile Perception. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, 380.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Aditya Shekhar Nittala, Anusha Withana, Narjes Pourjafarian, and Jürgen Steimle. 2018. Multi-Touch Skin: A Thin and Flexible Multi-Touch Sensor for On-Skin Input. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 33.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Simon Olberding, Nan-Wei Gong, John Tiab, Joseph A. Paradiso, and Jürgen Steimle. 2013. A Cuttable Multi-touch Sensor. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (UIST '13). ACM, NY, NY, USA, 245--254. DOI: http://dx.doi.org/10.1145/2501988.2502048Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Patrick Parzer, Florian Perteneder, Kathrin Probst, Christian Rendl, Joanne Leong, Sarah Schuetz, Anita Vogl, Reinhard Schwoediauer, Martin Kaltenbrunner, Siegfried Bauer, and Michael Haller. 2018. RESi: A Highly Flexible, Pressure-Sensitive, Imperceptible Textile Interface Based on Resistive Yarns. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (UIST '18). ACM, NY, NY, USA, 745--756. DOI: http://dx.doi.org/10.1145/3242587.3242664Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Patrick Parzer, Adwait Sharma, Anita Vogl, Jürgen Steimle, Alex Olwal, and Michael Haller. 2017. SmartSleeve: real-time sensing of surface and deformation gestures on flexible, interactive textiles, using a hybrid gesture detection pipeline. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. ACM, 565--577.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Shyamal Patel, Hyung Park, Paolo Bonato, Leighton Chan, and Mary Rodgers. 2012. A review of wearable sensors and systems with application in rehabilitation. Journal of neuroengineering and rehabilitation 9, 1 (2012), 21.Google ScholarGoogle ScholarCross RefCross Ref
  52. Angkoon Phinyomark, Chusak Limsakul, and Pornchai Phukpattaranont. 2009. A novel feature extraction for robust EMG pattern recognition. arXiv preprint arXiv:0912.3973 (2009).Google ScholarGoogle Scholar
  53. Jie Qi and Leah Buechley. 2014. Sketching in circuits: designing and building electronics on paper. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1713--1722.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Raf Ramakers, Kashyap Todi, and Kris Luyten. 2015. PaperPulse: An Integrated Approach for Embedding Electronics in Paper Designs. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15). ACM, NY, NY, USA, 2457--2466. DOI: http://dx.doi.org/10.1145/2702123.2702487Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Linda Rattfält. 2013. Smartware electrodes for ECG measurements -Design, evaluation and signal processing. Number 1546.Google ScholarGoogle Scholar
  56. Linda Rattfält, Fredrik Björefors, David Nilsson, Xin Wang, Petronella Norberg, Per Ask, and Linda Rattfalt@liu Se. 2013. Properties of screen printed electrocardiography smartware electrodes investigated in an electro-chemical cell. Technical Report. DOI: http://dx.doi.org/10.1186/1475--925X-12--64Google ScholarGoogle Scholar
  57. Bersain A Reyes, Hugo F Posada-Quintero, Justin R Bales, Amanda L Clement, George D Pins, Albert Swiston, Jarno Riistama, John P Florian, Barbara Shykoff, Michael Qin, and others. 2014. Novel electrodes for underwater ECG monitoring. IEEE Transactions on Biomedical Engineering 61, 6 (2014), 1863--1876.Google ScholarGoogle ScholarCross RefCross Ref
  58. Shigeru Sakurazawa, Naofumi Yoshida, and Nagisa Munekata. 2004. Entertainment Feature of a Game Using Skin Conductance Response. In Proceedings of the 2004 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology (ACE '04). ACM, NY, NY, USA, 181--186. DOI: http://dx.doi.org/10.1145/1067343.1067365Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. T Scott Saponas, Desney S Tan, Dan Morris, Ravin Balakrishnan, Jim Turner, and James A Landay. 2009. Enabling always-available input with muscle-computer interfaces. In Proceedings of the 22nd annual ACM symposium on User interface software and technology. ACM, 167--176.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. T Scott Saponas, Desney S Tan, Dan Morris, Jim Turner, and James A Landay. 2010. Making muscle-computer interfaces more practical. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 851--854.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Valkyrie Savage, Xiaohan Zhang, and Björn Hartmann. 2012. Midas: fabricating custom capacitive touch sensors to prototype interactive objects. In Proceedings of the 25th annual ACM symposium on User interface software and technology. ACM, 579--588.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Olimex EKG-EMG Shield. 2020. Open Source EMG-ECG Shields. (2020). https://www.olimex.com/Products/Duino/Shields/ SHIELD-EKG-EMG/open-source-hardware Last Accessed: 2020-01-08.Google ScholarGoogle Scholar
  63. Sparkfun. 2020. SparkFun Single Lead Heart Rate Monitor. https://learn.sparkfun.com/tutorials/ ad8232-heart-rate-monitor-hookup-guide/all. (2020). Last Accessed: 2020-01-08.Google ScholarGoogle Scholar
  64. Jürgen Steimle, Joanna Bergstrom-Lehtovirta, Martin Weigel, Aditya Shekhar Nittala, Sebastian Boring, Alex Olwal, and Kasper Hornbæk. 2017. On-skin interaction using body landmarks. Computer 50, 10 (2017), 19--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. J Ridley Stroop. 1992. Studies of interference in serial verbal reactions. Journal of Experimental Psychology: General 121, 1 (1992), 15.Google ScholarGoogle ScholarCross RefCross Ref
  66. Seeed Studio. 2020a. Groove EMG Detector. http://wiki.seeedstudio.com/Grove-EMG_Detector/. (2020). Last Accessed: 2020-01-08.Google ScholarGoogle Scholar
  67. Seeed Studio. 2020b. Groove GSR Sensor. http://wiki.seeedstudio.com/Grove-GSR_Sensor/. (2020). Last Accessed: 2020-01-08.Google ScholarGoogle Scholar
  68. Miroslav Svetlak, Petr Bob, Michal Cernik, and Miloslav Kukleta. 2010. Electrodermal complexity during the Stroop colour word test. Autonomic Neuroscience 152, 1--2 (2010), 101--107.Google ScholarGoogle ScholarCross RefCross Ref
  69. Marieke van Dooren, J.J.G. (Gert-Jan) de Vries, and Joris H. Janssen. 2012. Emotional sweating across the body: Comparing 16 different skin conductance measurement locations. Physiology & Behavior 106, 2 (may 2012), 298--304. DOI: http://dx.doi.org/10.1016/J.PHYSBEH.2012.01.020Google ScholarGoogle ScholarCross RefCross Ref
  70. Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen Wu, Hsin-Ruey Tsai, Rong-Hao Liang, Yi-Ping Hung, and Mike Y. Chen. 2016. CircuitStack: Supporting Rapid Prototyping and Evolution of Electronic Circuits. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST '16). ACM, NY, NY, USA, 687--695. DOI: http://dx.doi.org/10.1145/2984511.2984527Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. R Chad Webb, Andrew P Bonifas, Alex Behnaz, Yihui Zhang, Ki Jun Yu, Huanyu Cheng, Mingxing Shi, Zuguang Bian, Zhuangjian Liu, Yun-Soung Kim, and others. 2013. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature materials 12, 10 (2013), 938.Google ScholarGoogle Scholar
  72. Martin Weigel, Tong Lu, Gilles Bailly, Antti Oulasvirta, Carmel Majidi, and Jürgen Steimle. 2015. Iskin: flexible, stretchable and visually customizable on-body touch sensors for mobile computing. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 2991--3000.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Martin Weigel, Aditya Shekhar Nittala, Alex Olwal, and Jürgen Steimle. 2017. SkinMarks: Enabling Interaction on Body Landmarks Using Conformal Skin Electronics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '17). ACM, NY, NY, USA. DOI: http://dx.doi.org/10.1145/3025453.3025704Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Anusha Withana, Daniel Groeger, and Jürgen Steimle. 2018. Tacttoo: A Thin and Feel-Through Tattoo for On-Skin Tactile Output. In The 31st Annual ACM Symposium on User Interface Software and Technology. ACM, 365--378.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. PJ Xu, H Zhang, and XM Tao. 2008. Textile-structured electrodes for electrocardiogram. Textile Progress 40, 4 (2008), 183--213.Google ScholarGoogle ScholarCross RefCross Ref
  76. Hung-Chi Yang, Tsung-Fu Chien, Shang-Hao Liu, and Hsuan-Han Chiang. Study of Single-Arm Electrode for ECG Measurement Using Flexible Print Circuit. (????).Google ScholarGoogle Scholar
  77. Woon-Hong Yeo, Yun-Soung Kim, Jongwoo Lee, Abid Ameen, Luke Shi, Ming Li, Shuodao Wang, Rui Ma, Sung Hun Jin, Zhan Kang, and others. 2013. Multifunctional epidermal electronics printed directly onto the skin. Advanced Materials 25, 20 (2013), 2773--2778.Google ScholarGoogle ScholarCross RefCross Ref
  78. P Zipp. 1982. Recommendations for the Standardization of Lead Positions in Surface Electromyography*. Technical Report. 41--54 pages. https://link.springer.com/content/pdf/10.1007/BF00952243.pdfGoogle ScholarGoogle Scholar

Index Terms

  1. PhysioSkin: Rapid Fabrication of Skin-Conformal Physiological Interfaces

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format