skip to main content
10.1145/344779.344810acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article
Free Access

Time-dependent visual adaptation for fast realistic image display

Published:01 July 2000Publication History

ABSTRACT

Human vision takes time to adapt to large changes in scene intensity, and these transient adjustments have a profound effect on visual appearance. This paper offers a new operator to include these appearance changes in animations or interactive real-time simulations, and to match a user's visual responses to those the user would experience in a real-world scene.

Large, abrupt changes in scene intensities can cause dramatic compression of visual responses, followed by a gradual recovery of normal vision. Asymmetric mechanisms govern these time-dependent adjustments, and offer adaptation to increased light that is much more rapid than adjustment to darkness. We derive a new tone reproduction operator that simulates these mechanisms. The operator accepts a stream of scene intensity frames and creates a stream of color display images.

All operator components are derived from published quantitative measurements from physiology, psychophysics, color science, and photography. ept intentionally simple to allow fast computation, the operator is meant for use with real-time walk-through renderings, high dynamic range video cameras, and other interactive applications. We demonstrate its performance on both synthetically generated and acquired “real-world” scenes with large dynamic variations of illumination and contrast.

Index Terms

  1. Time-dependent visual adaptation for fast realistic image display

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader