skip to main content
article
Free Access

Theory and application of specular path perturbation

Published:01 October 2000Publication History
Skip Abstract Section

Abstract

In this paper we apply perturbation methods to the problem of computing specular reflections in curved surfaces. The key idea is to generate families of closely related optical paths by expanding a given path into a high-dimensional Taylor series. Our path perturbation method is based on closed-form expressions for linear and higher-order approximations of ray paths, which are derived using Fermat's Variation Principle and the Implicit Function Theorem (IFT). The perturbation formula presented here holds for general multiple-bounce reflection paths and provides a mathematical foundation for exploiting path coherence in ray tracing acceleration techniques and incremental rendering. To illustrate its use, we describe an algorithm for fast approximation of specular reflections on curved surfaces; the resulting images are highly accurate and nearly indistinguishable from ray traced images.

References

  1. ADELSON,S.J.AND HODGES, L. F. 1995. Generating exact ray-traced animation frames by reprojection. IEEE Comput. Graph. Appl. 15, 3, 43-52. Google ScholarGoogle Scholar
  2. ADELSON,S.J.AND HODGES, L. 1993. Stereoscopic ray tracing. Visual Comput. 10,3, 127-144.Google ScholarGoogle Scholar
  3. APOSTOL, T. M. 1969. Calculus II: Multi-Variable Calculus and Linear Algebra, with Applications to Differential Equations and Probability. John Wiley and Sons, Inc., New York, NY.Google ScholarGoogle Scholar
  4. ARVO,J.AND KIRK, D. 1989. A survey of ray tracing acceleration techniques. In An Introduction to Ray Tracing, A. S. Glassner, Ed. Academic Press Ltd., London, UK, 201-262. Google ScholarGoogle Scholar
  5. AZIZ,A.AND NA, T. Y. 1984. Perturbation Methods in Heat Transfer. Hemisphere Publishing Corp., New York, NY.Google ScholarGoogle Scholar
  6. BADT,S.JR. 1988. Two algorithms for taking advantage of temporal coherence in ray tracing. Visual Comput. 4, 3 (Sept.), 123-132.Google ScholarGoogle Scholar
  7. BORN,M.AND WOLF, E. 1965. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 3rd ed. Pergamon Press, Inc., Tarrytown, NY.Google ScholarGoogle Scholar
  8. BRI~RE,N.AND POULIN, P. 1996. Hierarchical view-dependent structures for interactive scene manipulation. In Proceedings of the 23rd Annual Conference on Computer Graphics (SIGGRAPH '96, New Orleans, LA, Aug. 4-9), J. Fujii, Chair. Annual conference series. ACM Press, New York, NY, 83-90. Google ScholarGoogle Scholar
  9. CHAPMAN, J., CALVERT,T.W.,AND DILL, J. 1990. Exploiting temporal coherence in ray tracing. In Proceedings of the Conference on Graphics Interface (Halifax, Nova Scotia, May 14-18), S. MacKay and E. M. Kidd, Eds. Canadian Information Processing Society, Toronto, Canada, 196-204. Google ScholarGoogle Scholar
  10. CHAPMAN, J., CALVERT,T.W.,AND DILL, J. 1991. Spatio-temporal coherence in ray tracing. In Proceedings of the Conference on Graphics Interface '91 (Calgary, Alberta, June 3-7), W. A. Davis and B. Wyvill, Chairs. Morgan Kaufmann Publishers Inc., San Francisco, CA, 101-108.Google ScholarGoogle Scholar
  11. CHEN, M. 1999. Perturbation methods for image synthesis. Master's Thesis. California Institute of Technology, Pasadena, CA. ftp://ftp.cs.caltech.edu/tr/cs-tr-99-05.ps.Z.Google ScholarGoogle Scholar
  12. CHEN,M.AND ARVO, J. 2000. Perturbation methods for interactive specular reflections. IEEE Trans. Visual. Comput. Graph. 6, 3 (July-Sept.), 253-264. Google ScholarGoogle Scholar
  13. COLE, J. D. 1968. Perturbation Methods in Applied Mathmatics. Blaisdell Publishing Co., London, UK.Google ScholarGoogle Scholar
  14. COOK, R. L. 1998. Shade trees. In Proceeding of the 25th SIGGRAPH Conference Celebration on Seminal Graphics: Pioneering Effects that Shaped the Field (SIGGRAPH '98), R. Wolfe, Ed. ACM Press, New York, NY, 137-145. Google ScholarGoogle Scholar
  15. DYKE, M. V. 1964. Perturbation Methods in Fluid Mechanics. Academic Press, Inc., New York, NY.Google ScholarGoogle Scholar
  16. IGEHY, H. 1999. Tracing ray differentials. In Proceedings of the Conference on Computer Graphics (SIGGRAPH 99, Aug.). ACM Press, New York, NY, 179-186. Google ScholarGoogle Scholar
  17. JEVANS, D. A. 1992. Object space temporal coherence for ray tracing. In Proceedings of the Conference on Graphics Interface '92 (Vancouver, BC, Canada, May 11-15), K. S. Booth and A. Fournier, Eds. Morgan Kaufmann Publishers Inc., San Francisco, CA, 176-183. Google ScholarGoogle Scholar
  18. LIN,C.C.AND SEGEL, L. A. 1988. Mathematics Applied to Deterministic Problems in the Natural Sciences. SIAM, Philadelphia, PA.Google ScholarGoogle Scholar
  19. LISCHINSKI,D.AND RAPPOPORT, A. 1998. Image-based rendering for non-diffuse synthetic scenes. In Proceedings of the 9th Eurographics Workshop on Rendering (Vienna, Austria, June). Springer-Verlag, New York, NY, 301-314.Google ScholarGoogle Scholar
  20. MARSDEN,J.E.AND HOFFMAN, M. J. 1993. Elementary Classical Analysis. W. H. Freeman and Co., New York, NY.Google ScholarGoogle Scholar
  21. MITCHELL,D.AND HANRAHAN, P. 1992. Illumination from curved reflectors. SIGGRAPH Comput. Graph. 26, 2 (July), 283-291. Google ScholarGoogle Scholar
  22. MURAKAMI,K.AND HIROTA, K. 1990. Incremental ray tracing. In Conference Proceedings of the Eurographics Workshop on Photosimulation, Realism and Physics in Computer Graphics (Rennes, France, June). 15-29.Google ScholarGoogle Scholar
  23. NEUMANN, P. M. 1998. Reflections on reflection in a spherical mirror. Am. Math. Monthly 105, 6 (June-July), 523-528.Google ScholarGoogle Scholar
  24. OFEK,E.AND RAPPOPORT, A. 1998. Interactive reflections on curved objects. In Proceedings of the 25th Annual Conference on Computer Graphics (SIGGRAPH '98, Orlando, FL, July 19-24), S. Cunningham, W. Bransford, and M. F. Cohen, Chairs. ACM Press, New York, NY, 333-342. Google ScholarGoogle Scholar
  25. SEGEL,L.A.AND HANDELMAN, G. H. 1977. Mathematics Applied to Continuum Mechanics. Macmillan Publishing Co., Inc., Indianapolis, IN.Google ScholarGoogle Scholar
  26. S~QUIN,C.H.AND SMYRL, E. K. 1989. Parameterized ray-tracing. SIGGRAPH Comput. Graph. 23, 3 (July), 307-314. Google ScholarGoogle Scholar
  27. SHINYA, M., TAKAHASHI, T., AND NAITO, S. 1987. Principles and applications of pencil tracing. SIGGRAPH Comput. Graph. 21, 4 (July), 45-54. Google ScholarGoogle Scholar
  28. VEACH,E.AND GUIBAS, L. J. 1997. Metropolis light transport. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '97, Los Angeles, CA, Aug. 3-8), G. S. Owen, T. Whitted, and B. Mones-Hattal, Chairs. ACM Press/Addison-Wesley Publ. Co., New York, NY, 65-76. Google ScholarGoogle Scholar

Index Terms

  1. Theory and application of specular path perturbation

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in

                Full Access

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader