skip to main content
10.1145/502512.502528acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
Article

Data mining with sparse grids using simplicial basis functions

Authors Info & Claims
Published:26 August 2001Publication History

ABSTRACT

Recently we presented a new approach [18] to the classification problem arising in data mining. It is based on the regularization network approach but, in contrast to other methods which employ ansatz functions associated to data points, we use a grid in the usually high-dimensional feature space for the minimization process. To cope with the curse of dimensionality, we employ sparse grids [49]. Thus, only O(hn-1nd-1) instead of O(hn-d) grid points and unknowns are involved. Here d denotes the dimension of the feature space and hn = 2-n gives the mesh size. We use the sparse grid combination technique [28] where the classification problem is discretized and solved on a sequence of conventional grids with uniform mesh sizes in each dimension. The sparse grid solution is then obtained by linear combination. In contrast to our former work, where d-linear functions were used, we now apply linear basis functions based on a simplicial discretization. This allows to handle more dimensions and the algorithm needs less operations per data point.We describe the sparse grid combination technique for the classification problem, give implementational details and discuss the complexity of the algorithm. It turns out that the method scales linearly with the number of given data points. Finally we report on the quality of the classifier built by our new method on data sets with up to 10 dimensions. It turns out that our new method achieves correctness rates which are competitive to that of the best existing methods.

References

  1. 1.E. Arge, M. Dmhlen, and A. Tveito. Approximation of scattered data using smooth grid functions. J. Comput. Appl. Math, 59:191-205, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. 2.R. Balder. Adaptive Verfahren fiat elliptische und parabolische Differentialgleichungen auf diinnen Gittern. Dissertation, Technische Universitait Miinchen, 1994.Google ScholarGoogle Scholar
  3. 3.G. Baszenski. N -t h order polynomial spline blending. In W. Schempp and K. Zeller, editors, Multivariate Approximation Theory III, ISNM 75, pages 35-46. Birkhaiuser, Basel, 1985.Google ScholarGoogle Scholar
  4. 4.S. D. Bay. The UCI KDD archive. http://kdd.ics.uci.edu, 1999.Google ScholarGoogle Scholar
  5. 5.M. J. A. Berry and G. S. Linoff. Mastering Data Mining. Wiley, 2000.Google ScholarGoogle Scholar
  6. 6.C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998. http://www.ics.uci.edu/amlearn/MLRepository.html.Google ScholarGoogle Scholar
  7. 7.D. Botkin, J. Janak, and J. Wallis. Some ecological consequences of a computer model of forest growth. J. Ecology, 60:849-872, 1972.Google ScholarGoogle ScholarCross RefCross Ref
  8. 8.H.-J. Bungartz. Diinne Gitter und deren Anwendun 9 bei der adaptiven LSsung der dreidimensionalen Poisson-Gleichung. Dissertation, Institut ffir Informatik, Technische Universitait Miinchen, 1992.Google ScholarGoogle Scholar
  9. 9.H.-J. Bungartz, T. Dornseifer, and C. Zenger. Tensor product approximation spaces for the efficient numerical solution of partial differential equations. In Proc. Int. Workshop on Scientific Computations, Konya, 1996. Nova Science Publishers, 1997.Google ScholarGoogle Scholar
  10. 10.H.-J. Bungartz, M. Griebel, D. RSschke, and C. Zenger. Pointwise convergence of the combination technique for the Laplace equation. East-West J. Numer. Math., 2:21-45, 1994. also as SFB-Bericht 342/16/93A, Institut fiir Informatik, TU Miinchen, 1993.Google ScholarGoogle Scholar
  11. 11.V. Cherkassky and F. Mulier. Learning from Data - Concepts, Theory and Methods. John Wiley & Sons, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. 12.K. Cios, W. Pedrycz, and R. Swiniarski. Data Mining Methods for Knowledge Discovery. Kluwer, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. 13.T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7):1895-1924, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. 14.K. Frank, S. Heinrich, and S. Pereverzev. Information Complexity of Multivariate Fredholm Integral Equations in Sobolev Classes. J. of Complexity, 12:17-34, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. 15.H. Freudenthal. Simplizialzerlegungen yon beschra.nkter Flachheit. Annals of Mathematics, 43:580-582, 1942.Google ScholarGoogle ScholarCross RefCross Ref
  16. 16.J. Garcke and M. Griebel. On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. Journal of Computational Physics, 165(2):694-716, 2000. also as SFB 256 Preprint 670, Institut fiir Angewandte Mathematik, Universitait Bonn, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. 17.J. Garcke and M. Griebel. On the parallelization of the sparse grid approach for data mining. SFB 256 Preprint 721, Universitgt Bonn, 2001. http://wissrech.iam.unibonn.de/research/pub/garcke/psm.pdf.Google ScholarGoogle Scholar
  18. 18.J. Garcke, M. Griebel, and M. Thess. Data mining with sparse grids. 2000. Submitted, also as SFB 256 Preprint 675, Institut fiir Angewandte Mathematik, Universitait Bonn, 2000.Google ScholarGoogle Scholar
  19. 19.T. Gerstner and M. Griebel. Numerical Integration using Sparse Grids. Numer. Algorithms, 18:209-232, 1998. (also as SFB 256 preprint 553, Univ. Bonn, 1998).Google ScholarGoogle ScholarCross RefCross Ref
  20. 20.F. Girosi. An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6):1455-1480a 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. 21.F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7:219-265, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. 22.G. Golub, M. Heath, and G. Wahba. Generalized cross validation as a method for choosing a good ridge parameter. Technometrics, 21:215-224, 1979.Google ScholarGoogle ScholarCross RefCross Ref
  23. 23.M. Griebel. The combination technique for the sparse grid solution of PDEs on multiprocessor machines. Parallel Processing Letters, 2(1):61-70, 1992. also as SFB Bericht 342/14/91 A, Institut fiir Informatik, TU Mfinchen, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  24. 24.M. Griebel. Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing, 61(2):151-179, 1998. also as Proceedings Large-Scale Scientific Computations of Engineering and Environmental Problems, 7. June - 11. June, 1997, Varna, Bulgaria, Notes on Numerical Fluid Mechanics 62, Vieweg-Verlag, Braunschweig, M. Griebel, 0. Iliev, S. Margenov and P. Vassilevski (editors). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. 25.M. Griebel, W. Huber, T. Stortkuhl, and C. Zenger. On the parallel solution of 3D PDEs on a network of workstations and on vector computers. In A. Bode and M. D. Cin, editors, Parallel Computer Architectures: Theory, Hardware, Software, Applications, volume 732 of Lecture Notes in Computer Science, pages 276-291. Springer Verlag, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. 26.M. Griebel and S. Knapek. Optimized tensor-product approximation spaces. Constructive Approximation, 16(4):525-540, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  27. 27.M. Griebel, P. Oswald, and T. Schiekofer. Sparse grids for boundary integral equations. Numer. Mathematik, 83(2):279-312, 1999. also as SFB 256 report 554, Universitat Bonn.Google ScholarGoogle ScholarCross RefCross Ref
  28. 28.M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse grid problems. In P. de Groen and R. Beauwens, editors, Iterative Methods in Linear Algebra, pages 263-281. IMACS, Elsevier, North Holland, 1992. also as SFB Bericht, 342/19/90 A, Institut fiir Informatik, TU Miinchen, 1990.Google ScholarGoogle Scholar
  29. 29.M. Griebel and V. Thurner. The efficient solution of fluid dynamics problems by the combination technique. Int. J. Num. Meth. for Heat and Fluid Flow, 5(3):251-269, 1995. also as SFB Bericht 342/1/93 A, Institut fiir Informatik. TU Miinchen, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  30. 30.M. Hegland, O. M. Nielsen, and Z. Shen. High dimensional smoothing based on multilevel analysis. Technical report, Data Mining Group, The Australian National University, Canberra, November 2000. Submitted to SIAM J. Scientific Computing.Google ScholarGoogle Scholar
  31. 31.J. Hoschek and D. Lasser. Grundlagen der goemetrischen Datenverarbeitung, chapter 9. Teubner, 1992.Google ScholarGoogle Scholar
  32. 32.H. W. Kuhn. Some combinatorial lemmas in topology. IBM J. Res. Develop., 4:518-524, 1960.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. 33.Y. J. Lee and O. L. Mangasarian. SSVM: A smooth support vector machine for classification. Computational Optimization and Applications, 20(1), 2001. to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. 34.G. Melli. Datgen: A program that creates structured data. Website. http://www.datasetgenerator.com.Google ScholarGoogle Scholar
  35. 35.W. D. Penny and S. J. Roberts. Bayesian neural networks for classification: how useful is the evidence framework ? Neural Networks, 12:877-892, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. 36.B. D. Ripley. Neural networks and related methods for classification. Journal of the Royal Statistical Society B, 56(3):409-456, 1994.Google ScholarGoogle Scholar
  37. 37.S. L. Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1:317-327, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. 38.T. Schiekofer. Die Methode der Finiten Differenzen auf diinnen Gittern zur L5sung elliptischer und parabolischer partieller Differentialgleichungen. Doktorarbeit, Institut fiir Angewandte Mathematik, Universitait Bonn, 1999.Google ScholarGoogle Scholar
  39. 39.W. Sickel and F. Sprengel. Interpolation on sparse grids and Nikol'skij-Besov spaces of dominating mixed smoothness. J. Comput. Anal. Appl., 1:263-288, 1999.Google ScholarGoogle Scholar
  40. 40.S. Singh. 2d spiral pattern recognition with possibilistic measures. Pattern Recognition Letters, 19(2):141-147, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. 41.S. A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR, 148:1042-1043, 1963. Russian, Engl. Transl.: Soviet Math. Dokl. 4:240-243, 1963.Google ScholarGoogle Scholar
  42. 42.V. N. Temlyakov. Approximation of functions with bounded mixed derivative. Proc. Steklov Inst. Math,, 1, 1989.Google ScholarGoogle Scholar
  43. 43.A. N. Tikhonov and V. A. Arsenin. Solutios of ill-posed problems. W.H. Winston, Washington D.C., 1977.Google ScholarGoogle Scholar
  44. 44.F. Utreras. Cross-validation techniques for smoothing spline functions in one or two dimensions. In T. Gasser and M. Rosenblatt, editors, Smoothing techniques for curve estimation, pages 196-231. Springer-Verlag, Heidelberg, 1979.Google ScholarGoogle Scholar
  45. 45.V. N. Vapnik. Estimation of dependences based on empirical data. Springer-Verlag, Berlin, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. 46.V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. 47.G. Wahba. Spline models for observational data, volume 59 of Series in Applied Mathematics. SIAM, Philadelphia, 1990.Google ScholarGoogle Scholar
  48. 48.A. Wieland. Spiral data set. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/airepository/ai/areas/neural/bench/cmu/0.html.Google ScholarGoogle Scholar
  49. 49.C. Zenger. Sparse grids. In W. Hackbusch, editor, Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, Kiel, 1990, volume 31 of Notes on Num. Fluid Mech. Vieweg-Vcrlag, 1991.Google ScholarGoogle Scholar

Index Terms

  1. Data mining with sparse grids using simplicial basis functions

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          KDD '01: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining
          August 2001
          493 pages
          ISBN:158113391X
          DOI:10.1145/502512

          Copyright © 2001 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 26 August 2001

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          KDD '01 Paper Acceptance Rate31of237submissions,13%Overall Acceptance Rate1,133of8,635submissions,13%

          Upcoming Conference

          KDD '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader