skip to main content
article

Steerable illumination textures

Published:01 January 2002Publication History
Skip Abstract Section

Abstract

We introduce a new set of illumination basis functions designed for lighting bumpy surfaces. This lighting includes shadowing and interreflection. To create an image with a new light direction, only a linear combination of precomputed textures is required. This is possible by using a carefully selected set of steerable basis functions. Steerable basis lights have the property that they allow lights to move continuously without jarring visual artifacts. The new basis lights are shown to produce images of high visual quality with as few as 49 basis textures.

References

  1. ARVO, J. 1995. Analytic Methods for Simulated Light Transport. Ph.D. dissertation, Yale University. Google ScholarGoogle Scholar
  2. BALA, K., DORSEY,J.,AND TELLER, S. 1999. Radiance interpolants for accelerated bounded-error ray tracing. ACM Trans. Graphics 18, 3 (July), 213-256. Google ScholarGoogle Scholar
  3. BECKER,B.G.AND MAX, N. L. 1993. Smooth transitions between bump rendering algorithms. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '93) (Anaheim, Calif., Aug. 1-6). ACM, New York, pp. 183-190. Google ScholarGoogle Scholar
  4. BLINN, J. 1978. Simulation of wrinkled surfaces. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '78). ACM, New York, pp. 286-292. Google ScholarGoogle Scholar
  5. BLINN,J.AND NEWELL, M. 1976. Texture and reflection in computer generated images. Commun. ACM 19, 10 (Oct.), 542-547. Google ScholarGoogle Scholar
  6. COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The Reyes image rendering architecture. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '87) (July). ACM, New York, pp. 95-102. Google ScholarGoogle Scholar
  7. DANA, K., VAN GINNEKEN, B., NAYAR,S.,AND KOENDERINK, J. 1999. Reflectance and texture of real world surfaces. ACM Trans. Graphics 18, 1 (Jan.), 1-34. Google ScholarGoogle Scholar
  8. DEBEVEC, P., HAWKINS, T., TCHOU, C., DUIKER, H.-P., SAROKIN,W.,AND SAGAR, M. 2000. Acquiring the reflectance field of a human face. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '00). ACM, New York, pp. 145-156. Google ScholarGoogle Scholar
  9. DISCHLER, J.-M. 1998. Efficiently rendering macro geometric surface structures with bi-directional texture functions. In Proceedings of the 9th Eurographics Workshop on Rendering (July). pp. 169-180.Google ScholarGoogle Scholar
  10. DOBASHI, Y., KANEDA, K., NAKATANI, H., AND YAMASHITA, H. 1995. A quick rendering method using basis functions for interactive lighting design. In Proceedings of Eurographics. pp. 229-240.Google ScholarGoogle Scholar
  11. DORSEY, J., ARVO,J.,AND GREENBERG, D. 1995. Interactive design of complex time dependent lighting. IEEE Comput. Graph. Appl. 15, 2 (Mar.), 26-36. Google ScholarGoogle Scholar
  12. DORSEY,J.O.,SILLION, F. X., AND GREENBERG, D. P. 1991. Design and simulation of opera lighting and projection effects. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '91). ACM, New York, pp. 41-50. Google ScholarGoogle Scholar
  13. FREEMAN,W.T.AND ADELSON, E. H. 1991. The design and use of steerable filters. IEEE Trans. PAMI 13, 6, 891-906. Google ScholarGoogle Scholar
  14. GINNEKEN,B.V.,KOENDERINK,J.,AND DANA, K. J. 1999. Texture histograms as a function of irradiation and viewing direction. Int. J. Comput. Vis. 31, 2-3, 169-184. Google ScholarGoogle Scholar
  15. GORTLER,S.J.,GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. F. 1996. The lumigraph. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '96) (New Orleans, La., Aug. 4-9). ACM, New York, pp. 43-54. Google ScholarGoogle Scholar
  16. GOTSMAN, C. 1994. Constant-time filtering by singular value decomposition. Comput. Graph. Forum 13, 2 (June), 153-163.Google ScholarGoogle Scholar
  17. HAMMING, R. W. 1977. Digital Filters. Prentice-Hall, Englewood Cliffs, N.J.Google ScholarGoogle Scholar
  18. HEEGER,D.J.AND BERGEN, J. R. 1995. Pyramid-based texture analysis/synthesis. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '95) (Los Angeles, Calif., Aug. 9-11). ACM, New York, pp. 229-238. Google ScholarGoogle Scholar
  19. HEIDRICH, W., DAUBERT, K., KAUTZ,J.,AND SEIDEL, H.-P. 2000. Illuminating micro geometry based on precomputed visibility. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '00). ACM, New York, pp. 455-464. Google ScholarGoogle Scholar
  20. HEIDRICH,W.AND SEIDEL, H.-P. 1998. Ray-tracing procedural displacement shaders. In Proceedings of Graphics Interface. pp. 8-16.Google ScholarGoogle Scholar
  21. HORN,R.A.AND JOHNSON, C. R. 1990. Matrix Analysis. Cambridge University Press, Cambridge, Mass. Google ScholarGoogle Scholar
  22. KAJIYA, J. T. 1986. The rendering equation. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '86). ACM, New York, pp. 143-150. Google ScholarGoogle Scholar
  23. LEVOY,M.AND HANRAHAN, P. 1996. Light field rendering. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '96) (New Orleans, La., Aug. 4-9). ACM, New York, pp. 31-42. Google ScholarGoogle Scholar
  24. MALZBENDER, T., GELB,D.,AND WOLTERS, H. 2001. Polynomial texture maps. In Proceedings of the ACMConference on Computer Graphics (SIGGRAPH '01). ACM, New York, pp. 519-528. Google ScholarGoogle Scholar
  25. MAX, N. 1988. Horizon mapping: shadows for bump mapped surfaces. Vis. Comput. 4, 109-117.Google ScholarGoogle Scholar
  26. MICHAELIS, M. 1995. A lie goup approach to steerable filters. Patt. Rec. Lett. 16, 1165-1174. Google ScholarGoogle Scholar
  27. NIMEROFF,J.S.,SIMONCELLI, E., AND DORSEY, J. 1994. Efficient re-rendering of naturally illuminated environments. In Proceed -ings of the Eurographics Workshop on Rendering. pp. 359-373.Google ScholarGoogle Scholar
  28. OLIVEIRA, M., BISHOP,G.,AND MCALLISTER, D. 2000. Relief texture mapping. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '00). ACM, New York, pp. 359-368. Google ScholarGoogle Scholar
  29. PERONA, P. 1995. Deformable kernels for early vision. IEEE Trans. PAMI 17, 5, 488-499. Google ScholarGoogle Scholar
  30. PHARR,M.AND HANRAHAN, P. 1996. Direct ray tracing of displacement mapped triangles. In Proceedings of the Eurographics Workshop on Rendering. pp. 31-40. Google ScholarGoogle Scholar
  31. RAMAMOORTHI,R.AND HANRAHAN, P. 2001. An efficient representation for irradiance environment maps. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '01). ACM, New York, pp. 497-500. Google ScholarGoogle Scholar
  32. SANDER, P. V., GU, X., GORTLER,S.J.,HOPPE, H., AND SNYDER, J. 2000. Silhouette clipping. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '00). ACM, New York, pp. 327-334. Google ScholarGoogle Scholar
  33. SILLION, F. X., ARVO, J., WESTIN,S.,AND GREENBERG, D. 1991. A global illumination algorithm for general reflection distributions. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '91). ACM, New York, pp. 187-196. Google ScholarGoogle Scholar
  34. SIMONCELLI,E.P.AND FARID, H. 1995. Steerable wedge filters. In Proceedings of the 5th International Conference on Computer Vision. 186. Google ScholarGoogle Scholar
  35. SIMONCELLI,E.P.AND FREEMAN, W. T. 1995. The steerable pyramid: A flexible architecture for multiscale derivative computation. Int. Conf. Image Proc. 3, 444. Google ScholarGoogle Scholar
  36. SMITS, B., SHIRLEY,P.,AND STARK, M. 2000. Direct ray tracing of displacement mapped triangles. In Proceedings of the the Eurographics Workshop on Rendering, pp. 307-318. Google ScholarGoogle Scholar
  37. TEO, P. C. 1998. Theory and Applications of Steerable Functions. Ph.D. dissertation, Stanford Univ., Stanford, Calif. Google ScholarGoogle Scholar
  38. TEO,P.C.AND HEL-OR, Y. 1996. Design of multi-parameter steerable functions using cascade basis reduction. Tech. Rep. CS-TN-96-32. Computer Science Dept., Stanford Univ., Stanford, Calif. Google ScholarGoogle Scholar
  39. TEO,P.C.,SIMONCELLI,E.P.,AND HEEGER, D. J. 1997. Efficient linear re-rendering for interactive lighting design. Tech. Rep. CS-TN-97-60. Computer Science Dept., Stanford Univ., Stanford, Calif. Google ScholarGoogle Scholar
  40. WILLAMS, L. 1983. Pyramidal parametrics. In Proceedings of the ACM Conference on Computer Graphics (SIGGRAPH '83). ACM, New York, pp. 1-11. Google ScholarGoogle Scholar

Index Terms

  1. Steerable illumination textures

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader