skip to main content
article

Linear combination of transformations

Published:01 July 2002Publication History
Skip Abstract Section

Abstract

Geometric transformations are most commonly represented as square matrices in computer graphics. Following simple geometric arguments we derive a natural and geometrically meaningful definition of scalar multiples and a commutative addition of transformations based on the matrix representation, given that the matrices have no negative real eigenvalues. Together, these operations allow the linear combination of transformations. This provides the ability to create weighted combination of transformations, interpolate between transformations, and to construct or use arbitrary transformations in a structure similar to a basis of a vector space. These basic techniques are useful for synthesis and analysis of motions or animations. Animations through a set of key transformations are generated using standard techniques such as subdivision curves. For analysis and progressive compression a PCA can be applied to sequences of transformations. We describe an implementation of the techniques that enables an easy-to-use and transparent way of dealing with geometric transformations in graphics software. We compare and relate our approach to other techniques such as matrix decomposition and quaternion interpolation.

References

  1. ALEXA, M., AND MÜLLER, W. 2000. Representing animations by principal components. Computer Graphics Forum 19, 3 (August), 411-418. ISSN 1067-7055.Google ScholarGoogle Scholar
  2. BARR, A. H., CURRIN, B., GABRIEL, S., AND HUGHES, J. F. 1992. Smooth interpolation of orientations with angular velocity constraints using quaternions. Computer Graphics (Proceedings of SIGGRAPH 92) 26, 2 (July), 313-320. ISBN 0-201-51585-7. Held in Chicago, Illinois. Google ScholarGoogle Scholar
  3. BARTELS, R. H., BEATTY, J. C., AND BARSKY, B. A. 1985. An introduction to the use of splines in computer graphics. Google ScholarGoogle Scholar
  4. DENMAN, E. D., AND BEAVERS JR., A. N. 1976. The matrix sign function and computations in systems. Appl. Math. Comput. 2, 63-94.Google ScholarGoogle Scholar
  5. DO CARMO, M. P. 1992. Riemannian Geometry. Birkhäuser Verlag, Boston.Google ScholarGoogle Scholar
  6. DORST, L., AND MANN, S. 2001. Geometric algebra: a computation framework for geometrical applications. submitted to IEEE Computer Graphics & Applications. available as http://www.cgl.uwaterloo.ca/~smann/Papers/CGA01.pdf. Google ScholarGoogle Scholar
  7. DYN, N., LEVIN, D., AND GREGORY, J. 1987. A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 4, 4, 257-268.Google ScholarGoogle Scholar
  8. GABRIEL, S. A., AND KAJIYA, J. T. 1985. Spline interpolation in curved space. In SIGGRAPH '85 State of the Art in Image Synthesis seminar notes.Google ScholarGoogle Scholar
  9. GOLUB, G. H., AND VAN LOAN, C. F. 1989. Matrix Computations, second ed., vol. 3 of Johns Hopkins Series in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore, MD, USA. Second edition.Google ScholarGoogle Scholar
  10. GRASSIA, F. S. 1998. Practical parameterization of rotations using the exponential map. Journal of Graphics Tools 3, 3, 29-48. ISSN 1086-7651. Google ScholarGoogle Scholar
  11. HESTENES, D. 1991. The design of linear algebra and geometry. Acta Applicandae Mathematicae 23, 65-93.Google ScholarGoogle Scholar
  12. HIGHAM, N. J. 1997. Stable iterations for the matrix square root. Numerical Algorithms 15, 2, 227-242.Google ScholarGoogle Scholar
  13. HORN, R. A., AND JOHNSON, C. A. 1991. Topics in Matrix Analysis. Cambridge University press, Cambridge. Google ScholarGoogle Scholar
  14. HOSCHEK, J., AND LASSER, D. 1993. Fundamentals of computer aided geometric design. ISBN 1-56881-007-5. Google ScholarGoogle Scholar
  15. JOLLIFFE, I. T. 1986. Principal Component Analysis. Series in Statistics. Springer-Verlag.Google ScholarGoogle Scholar
  16. KENNEY, C., AND LAUB, A. J. 1989. Condition estimates for matrix functions. SIAM Journal on Matrix Analysis and Applications 10, 2, 191-209.Google ScholarGoogle Scholar
  17. KIM, M.-J., SHIN, S. Y., AND KIM, M.-S. 1995. A general construction scheme for unit quaternion curves with simple high order derivatives. Proceedings of SIGGRAPH 95 (August), 369-376. ISBN 0-201-84776-0. Held in Los Angeles, California. Google ScholarGoogle Scholar
  18. LENGYEL, J. E. 1999. Compression of time-dependent geometry. 1999 ACM Symposium on Interactive 3D Graphics (April), 89-96. ISBN 1-58113-082-1. Google ScholarGoogle Scholar
  19. MARTHINSEN, A. 2000. Interpolation in Lie groups. SIAM Journal on Numerical Analysis 37, 1, 269-285. Google ScholarGoogle Scholar
  20. MOLER, C. B., AND LOAN, C. F. V. 1978. Nineteen dubious ways to compute the matrix exponential. SIAM Review 20, 801-836.Google ScholarGoogle Scholar
  21. MURRAY, R. M., LI, Z., AND SASTRY, S. S. 1994. A Mathematical Introduction to Robotic Manipulation. CRC Press. Google ScholarGoogle Scholar
  22. NAEVE, A., AND ROCKWOOD, A. 2001. Geometric algebra. SIGGRAPH 2001 course #53.Google ScholarGoogle Scholar
  23. PARK, F. C., AND RAVANI, B. 1997. Smooth invariant interpolation of rotations. ACM Transactions on Graphics 16, 3 (July), 277-295. ISSN 0730-0301. Google ScholarGoogle Scholar
  24. RAMAMOORTHI, R., AND BARR, A. H. 1997. Fast construction of accurate quaternion splines. Proceedings of SIGGRAPH 97 (August), 287-292. ISBN 0-89791-896-7. Held in Los Angeles, California. Google ScholarGoogle Scholar
  25. SHOEMAKE, K., AND DUFF, T. 1992. Matrix animation and polar decomposition. Graphics Interface '92 (May), 258-264. Google ScholarGoogle Scholar
  26. SHOEMAKE, K. 1985. Animating rotation with quaternion curves. Computer Graphics (Proceedings of SIGGRAPH 85) 19, 3 (July), 245-254. Held in San Francisco, California. Google ScholarGoogle Scholar
  27. SHOEMAKE, K. 1991. Quaternions and 4x4 matrices. Graphics Gems II, 351-354. ISBN 0-12-064481-9. Held in Boston.Google ScholarGoogle Scholar
  28. WEB3D CONSORTIUM. 1999. H-Anim. http://ece.uwaterloo.ca:80/~h-anim.Google ScholarGoogle Scholar
  29. ZEFRAN, M., AND KUMAR, V. 1998. Rigid body motion interpolation. Computer Aided Design 30, 3, 179-189.Google ScholarGoogle Scholar
  30. ZEFRAN, M., KUMAR, V., AND CROKE, C. 1996. Choice of riemannian metrics for rigid body kinematics. In ASME 24th Biennial Mechanisms Conference.Google ScholarGoogle Scholar
  31. ZEFRAN, M. 1996. Continuous methods for motion planning. PhD-thesis, U. of Pennsylvania, Philadelphia, PA. Google ScholarGoogle Scholar
  32. ZORIN, D., AND SCHRÖDER, P. 1999. Subdivision for modeling and animation. SIGGRAPH 1999 course # 47.Google ScholarGoogle Scholar

Index Terms

  1. Linear combination of transformations

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader