skip to main content
article

Removing excess topology from isosurfaces

Published:01 April 2004Publication History
Skip Abstract Section

Abstract

Many high-resolution surfaces are created through isosurface extraction from volumetric representations, obtained by 3D photography, CT, or MRI. Noise inherent in the acquisition process can lead to geometrical and topological errors. Reducing geometrical errors during reconstruction is well studied. However, isosurfaces often contain many topological errors in the form of tiny handles. These nearly invisible artifacts hinder subsequent operations like mesh simplification, remeshing, and parametrization. In this article we present a practical method for removing handles in an isosurface. Our algorithm makes an axis-aligned sweep through the volume to locate handles, compute their sizes, and selectively remove them. The algorithm is designed to facilitate out-of-core execution. It finds the handles by incrementally constructing and analyzing a Reeb graph. The size of a handle is measured by a short nonseparating cycle. Handles are removed robustly by modifying the volume rather than attempting "mesh surgery." Finally, the volumetric modifications are spatially localized to preserve geometrical detail. We demonstrate topology simplification on several complex models, and show its benefits for subsequent surface processing.

References

  1. Aleksandrov, P. 1956. Combinatorial Topology. Vol. 1. Graylock Press.Google ScholarGoogle Scholar
  2. Attene, M., Biasotti, S., and Spagnuolo, M. 2001. Re-meshing techniques for topological analysis. In International Conference of Shape Modeling and Applications (Genova, Italy). IEEE Computer Society Press, Los Alamitos, Calif., 142--151. Google ScholarGoogle Scholar
  3. Axen, U. 1999. Computing morse functions on triangulated manifolds. In Proceedings of the SIAM Symposium on Discrete Algorithms (SODA). 850--851. Google ScholarGoogle Scholar
  4. Axen, U. and Edelsbrunner, H. 1998. Auditory morse analysis of triangulated manifolds. In Mathematical Visualization, H.-C. Hege and K. Polthier, Eds. Springer-Verlag, Berlin, Germany, 223--236.Google ScholarGoogle Scholar
  5. Bischoff, S. and Kobbelt, L. 2002. Isosurface reconstruction with topology control. In Proceedings of Pacific Graphics. 246--255. Google ScholarGoogle Scholar
  6. Carr, H., Snoeyink, J., and Axen, U. 2003. Computing contour trees in all dimensions. Comput. Geom. 24, 2, 75--94. Google ScholarGoogle Scholar
  7. Colin de Verdière, É. and Lazarus, F. 2002. Optimal system of loops on an orientable surface. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (Vancouver, B.C., Canada). IEEE Computer Society Press, Los Alamitos, Calif., 627--636. Google ScholarGoogle Scholar
  8. Cormen, T., Leiserson, C., and Rivest, R. 1990. Introduction to Algorithms. MIT Press, Cambridge, Mass. Google ScholarGoogle Scholar
  9. Curless, B. and Levoy, M. 1996. A volumetric method for building complex models from range images. In Proceedings of SIGGRAPH. ACM, New York, 303--312. Google ScholarGoogle Scholar
  10. Dey, T. K. and Schipper, H. 1995. A new technique to compute polygonal schema for 2-manifolds with applications to null-homotopy detection. Disc. Comput. Geom. 14, 93--110.Google ScholarGoogle Scholar
  11. Edelsbrunner, H., Harer, J., Natarajan, V., and Pascucci, V. 2003. Morse complexes for piecewise linear 3-manifolds. In Proceedings of the 19th Annual ACM Symposium on Computer Geometry. ACM, New York, 98--101. Google ScholarGoogle Scholar
  12. Edelsbrunner, H., Letscher, D., and Zomorodian, A. 2002. Topological persistence and simplification. Disc. Comput. Geom. 28, 511--533.Google ScholarGoogle Scholar
  13. El-Sana, J. and Varshney, A. 1997. Controlled simplification of genus for polygonal models. In Proceedings of IEEE Visualization. IEEE Computer Society Press, Los Alamitos, Calif., 403--412. Google ScholarGoogle Scholar
  14. Erickson, J. and Har-Peled, S. 2002. Optimally cutting a surface into a disk. In Proceedings of SOCG. ACM, New York, 244--253. Google ScholarGoogle Scholar
  15. Francis, G. and Weeks, J. 1999. Conway's ZIP proof. Amer. Math. Monthly 106, 393--399.Google ScholarGoogle Scholar
  16. Garland, M. and Heckbert, P. S. 1997. Surface simplification using quadric error metrics. Proceedings of SIGGRAPH. ACM, New York, 209--216. Google ScholarGoogle Scholar
  17. Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry images. Proceedings of SIGGRAPH. ACM, New York, 355--361. Google ScholarGoogle Scholar
  18. Guskov, I., Khodakovsky, A., SchrAder, P., and Sweldens, W. 2002. Hybrid meshes: multiresolution using regular and irregular refinement. In Proceedings of the 18th Annual Symposium on Computational Geometry. ACM, New York, 264--272. Google ScholarGoogle Scholar
  19. Guskov, I. and Wood, Z. 2001. Topological noise removal. Graph. Interf., 19--26. Google ScholarGoogle Scholar
  20. Han, X., Xu, C., and Prince, J. L. 2001. A topology preserving deformable model using level sets. In Proceedings of the IEEE Computer Vision and Pattern Recognition. IEEE Computer Society Press, Los Alamitos, Calif., 765--770.Google ScholarGoogle Scholar
  21. He, T., Hong, L., Varshney, A., and Wang, S. W. 1996. Controlled Topology Simplification. IEEE Trans. Visual. Comput. Graph. 2, 2, 171--184. Google ScholarGoogle Scholar
  22. Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3d shapes. In Proceedings of SIGGRAPH. ACM, New York, 203--212. Google ScholarGoogle Scholar
  23. Hilton, A., Toddart, A. J., Illingworth, J., and Windeatt, T. 1996. Reliable surface reconstruction from multiple range images. Fourth European Conference on Computer Vision I, 117--126. Google ScholarGoogle Scholar
  24. Hoppe, H. 1996. Progressive meshes. In Proceedings of SIGGRAPH. ACM, New York, 99--108. Google ScholarGoogle Scholar
  25. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1992. Surface reconstruction from unorganized points. In Computer Graphics (Proceedings of SIGGRAPH 92). ACM, New York, 71--78. Google ScholarGoogle Scholar
  26. Jaume, S., Macq, B., and Warfield, S. K. 2002. Labeling the brain surface using a deformable multiresolution mesh. In MICCAI. 451--457. Google ScholarGoogle Scholar
  27. Kartasheva, E. 1999. The algorithm for automatic cutting of three-dimensional polyhedron of h-genus. In International Conference of Shape Modeling and Applications (Aizu, Japan). IEEE Computer Society Press, Los Alamitos, Calif., 26--33. Google ScholarGoogle Scholar
  28. Kaufman, A. 1987. Scan-conversion of polygons. In Proceedings of Eurographics. 197--208.Google ScholarGoogle Scholar
  29. Khodakovsky, A., Schröder, P., and Sweldens, W. 2000. Progressive geometry compression. In Proceedings of SIGGRAPH. ACM, New York, 271--278. Google ScholarGoogle Scholar
  30. Kikinis, R., Shenton, M. E., Iosifescu, D. V., McCarley, R. W., Saiviroonporn, P., Hokama, H. H., Robatino, A., Metcalf, D., Wible, C. G., Portas, C. M., Donnino, R., and Jolesz, F. A. 1996. A digital brain atlas for surgical planning, model driven segmentation and teaching. IEEE Trans. Visual. Comput. Graph., 232--241. Google ScholarGoogle Scholar
  31. Kreveld, M. V., van Oostrum, R., Bajaj, C., Pascucci, V., and Schikore, D. 1997. Contour trees and small seed sets for isosurface traversal. In Proceedings of the 13th ACM Symposium on Computational Geometry. ACM, New York, 212--219. Google ScholarGoogle Scholar
  32. Lachaud, J.-O. 1996. Topologically Defined Iso-surfaces. In Proceedings of the 6th Discrete Geometry for Computer Imagery (DGCI). Lecture Notes in Computer Science, Vol. 1176. Springer-Verlag, New York, 245--256. Google ScholarGoogle Scholar
  33. Lazarus, F., Pocchiola, M., Vegter, G., and Verroust, A. 2001. Computing a canonical polygonal schema of an orientable triangulated surface. In Proceedings of the ACM SOCG. ACM, New York, 80--89. Google ScholarGoogle Scholar
  34. Lazarus, F. and Verroust, A. 1999. Level set diagrams of polyhedral objects. In Proceedings of the ACM Solid Modeling'99 (Ann Arbor, Mich.). ACM, New York, 130--140. Google ScholarGoogle Scholar
  35. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. 2000. The digital Michelangelo project: 3D scanning of large statues. In Proceedings of SIGGRAPH. ACM, New York, 131--144. Google ScholarGoogle Scholar
  36. Lorensen, W. E. and Cline, H. E. 1987. Marching cubes: A high resolution 3d surface construction algorithm. In Proceedings of SIGGRAPH. ACM, New York, 163--169. Google ScholarGoogle Scholar
  37. Massey, W. 1967. Algebraic Topology: An Introduction. Harcourt, Brace & World, Inc., New York.Google ScholarGoogle Scholar
  38. Milnor, J. 1963. Morse Theory. Princeton University Press, Princeton, N.J.Google ScholarGoogle Scholar
  39. Nooruddin, F. and Turk, G. 2003. Simplification and repair of polygonal models using volumetric techniques. IEEE Trans. Visual. Comput. Graph. 9, 2, 191--205. Google ScholarGoogle Scholar
  40. Popovic, J. and Hoppe, H. 1997. Progressive simplicial complexes. In Proceedings of SIGGRAPH. ACM, New York, 217--224. Google ScholarGoogle Scholar
  41. Reeb, G. 1946. Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique. Comptes Rendus Acad. Sci. de Paris. 847--849.Google ScholarGoogle Scholar
  42. Sander, P., Snyder, J., Gortler, S., and Hoppe, H. 2001. Texture mapping progressive meshes. In Proceedings of SIGGRAPH. ACM, New York, 409--416. Google ScholarGoogle Scholar
  43. Schröder, P. and Sweldens, W., Eds. 2001. Digital Geometry Processing. Course Notes. In ACM SIGGRAPH. ACM, New York.Google ScholarGoogle Scholar
  44. Shattuck, D. W. and Leahy, R. M. 2001. Automated graph based analysis and correction of cortical volume topology. IEEE Trans. Med. Imag. 1167--1177.Google ScholarGoogle Scholar
  45. Shinagawa, Y. and Kunii, T. L. 1991. Constructing a reeb graph automatically from cross sections. IEEE Comput. Graph. Appl. 11, 6, 44--51. Google ScholarGoogle Scholar
  46. Szymczak, A. and Vanderhyde, J. 2003. Extraction of topologically simple isosurfaces from volume datasets. In Proceedings of Visualization 2003. IEEE Computer Society Press, Los Alamitos, Calif. Google ScholarGoogle Scholar
  47. Vegter, G. and Yapp, C. K. 1990. Computational complexity of combinatorial surfaces. In Proceedings of the 6th Annual Symposium on Computational Geometry. 93--111. Google ScholarGoogle Scholar
  48. Wood, Z. 2003. Computational topology algorithms for discrete 2-manifolds. Ph.D. dissertation. California Institute of Technology. Google ScholarGoogle Scholar
  49. Wood, Z., Desbrun, M., Schröder, P., and Breen, D. 2000. Semi-regular mesh extraction from volumes. In Proceedings of Visualization. 275--282. Google ScholarGoogle Scholar
  50. Wyvill, B., McPheeters, C., and Wyvill, G. 1986. Data structure for soft objects. Vis. Comput. 2, 4, 227--234.Google ScholarGoogle Scholar
  51. Zomorodian, A. 2001. Computing and comprehending topology: Persistence and hierarchical morse complexes. Ph.D. dissertation. University of Illinois at Urbana-Champaign. Google ScholarGoogle Scholar

Index Terms

  1. Removing excess topology from isosurfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader