skip to main content
research-article

Mining graph patterns efficiently via randomized summaries

Published:01 August 2009Publication History
Skip Abstract Section

Abstract

Graphs are prevalent in many domains such as Bioinformatics, social networks, Web and cyber-security. Graph pattern mining has become an important tool in the management and analysis of complexly structured data, where example applications include indexing, clustering and classification. Existing graph mining algorithms have achieved great success by exploiting various properties in the pattern space. Unfortunately, due to the fundamental role subgraph isomorphism plays in these methods, they may all enter into a pitfall when the cost to enumerate a huge set of isomorphic embeddings blows up, especially in large graphs.

The solution we propose for this problem resorts to reduction on the data space. For each graph, we build a summary of it and mine this shrunk graph instead. Compared to other data reduction techniques that either reduce the number of transactions or compress between transactions, this new framework, called Summarize-Mine, suggests a third path by compressing within transactions. Summarize-Mine is effective in cutting down the size of graphs, thus decreasing the embedding enumeration cost. However, compression might lose patterns at the same time. We address this issue by generating randomized summaries and repeating the process for multiple rounds, where the main idea is that true patterns are unlikely to miss from all rounds. We provide strict probabilistic guarantees on pattern loss likelihood. Experiments on real malware trace data show that Summarize-Mine is very efficient, which can find interesting malware fingerprints that were not revealed previously.

References

  1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, pages 487--499, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algorithms. ACM Computing Survey, 38(1):1--69, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. Chen, X. Yan, F. Zhu, J. Han, and P. S. Yu. Graph OLAP: Towards online analytical processing on graphs. In ICDM, pages 103--112, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Chen, W. Hsu, M.-L. Lee, and S.-K. Ng. Nemofinder: Dissecting genome-wide protein-protein interactions with meso-scale network motifs. In KDD, pages 106--115, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of malicious behavior. In ESEC/SIGSOFT FSE, pages 5--14, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. Frequent substructure-based approaches for classifying chemical compounds. IEEE Transactions on Knowledge and Data Engineering, 17(8):1036--1050, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. N. Garofalakis and P. B. Gibbons. Approximate query processing: Taming the terabytes (tutorial). In VLDB, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD Conference, pages 1--12, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. A. Hasan, V. Chaoji, S. Salem, J. Besson, and M. J. Zaki. Origami: Mining representative orthogonal graph patterns. In ICDM, pages 153--162, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. H. He and A. K. Singh. Efficient algorithms for mining significant substructures in graphs with quality guarantees. In ICDM, pages 163--172, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. L. B. Holder, D. J. Cook, and S. Djoko. Substucture discovery in the subdue system. In KDD Workshop, pages 169--180, 1994.Google ScholarGoogle Scholar
  12. J. Huan, W. Wang, J. Prins, and J. Yang. Spin: Mining maximal frequent subgraphs from graph databases. In KDD, pages 581--586, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns from graphs: Mining graph data. Machine Learning, 50(3):321--354, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Kramer, L. D. Raedt, and C. Helma. Molecular feature mining in hiv data. In KDD, pages 136--143, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages 313--320, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. Data Mining and Knowledge Discovery, 11(3):243--271, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Lachmann and M. Riedewald. Finding relevant patterns in bursty sequences. PVLDB, 1(1):78--89, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over time: Densification laws, shrinking diameters and possible explanations. In KDD, pages 177--187, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with bounded error. In SIGMOD Conference, pages 419--432, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques. In KDD, pages 228--238, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. N. Polyzotis and M. N. Garofalakis. Xsketch synopses for xml data graphs. ACM Transactions on Database Systems, 31(3):1014--1063, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Raghavan and H. Garcia-Molina. Representing web graphs. In ICDE, pages 405--416, 2003.Google ScholarGoogle Scholar
  23. S. Reinhardt and G. Karypis. A multi-level parallel implementation of a program for finding frequent patterns in a large sparse graph. In IPDPS, pages 1--8, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  24. T. Sarlós, A. A. Benczúr, K. Csalogány, D. Fogaras, and B. Rácz. To randomize or not to randomize: Space optimal summaries for hyperlink analysis. In WWW, pages 297--306, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph summarization. In SIGMOD Conference, pages 567--580, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. H. Toivonen. Sampling large databases for association rules. In VLDB, pages 134--145, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns by leap search. In SIGMOD Conference, pages 433--444, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In ICDM, pages 721--724, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based approach. In SIGMOD Conference, pages 335--346, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. N. Zhang, V. Kacholia, and M. T. Özsu. A succinct physical storage scheme for efficient evaluation of path queries in xml. In ICDE, pages 54--65, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Mining graph patterns efficiently via randomized summaries

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader