skip to main content
research-article

The case for data visualization management systems: vision paper

Published:01 June 2014Publication History
Skip Abstract Section

Abstract

Most visualizations today are produced by retrieving data from a database and using a specialized visualization tool to render it. This decoupled approach results in significant duplication of functionality, such as aggregation and filters, and misses tremendous opportunities for cross-layer optimizations. In this paper, we present the case for an integrated Data Visualization Management System (DVMS) based on a declarative visualization language that fully compiles the end-to-end visualization pipeline into a set of relational algebra queries. Thus the DVMS can be both expressive via the visualization language, and performant by lever-aging traditional and visualization-specific optimizations to scale interactive visualizations to massive datasets.

References

  1. ggplot2. ggplot2.org.Google ScholarGoogle Scholar
  2. CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 6-9, 2013, Online Proceedings, 2013.Google ScholarGoogle Scholar
  3. The lyra visualization design environment (vde), February 2014. http://idl.cs.washington.edu/projects/lyra/.Google ScholarGoogle Scholar
  4. S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb: queries with bounded errors and bounded response times on very large data. 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. Battle, R. Chang, and M. Stonebraker. Dynamic reduction of query result sets for interactive visualization. 2013.Google ScholarGoogle Scholar
  6. M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization. InfoVis, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents. InfoVis, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Chaudhuri, V. Narasayya, and R. Ramamurthy. Estimating progress of execution for sql queries. In SIGMOD, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Chaudhuri and V. R. Narasayya. Autoadmin 'what-if' index analysis utility. In SIGMOD, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand. A survey of visibility for walkthrough applications. IEEE Transactions on Visualization and Computers, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. KDD, 1997.Google ScholarGoogle Scholar
  12. J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. Ikeda and J. Widom. Panda: A system for provenance and data. IEEE Data Eng. Bull., 2010.Google ScholarGoogle Scholar
  14. J.-F. Im, F. G. Villegas, and M. J. McGuffin. Visreduce: Fast and responsive incremental information visualization of large datasets. In BigData Conference, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  15. N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and Interactive Cube Exploration. In ICDE, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  16. S. Kandel, A. Paepcke, J. Hellerstein, and H. Jeffrey. Enterprise data analysis and visualization: An interview study. VAST, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Kemper and G. Moerkotte. Advanced query processing in object bases using access support relations. In VLDB, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Key, B. Howe, D. Perry, and C. R. Aragon. Vizdeck: self-organizing dashboards for visual analytics. SIGMOD, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. D. Lins, J. T. Klosowski, and C. E. Scheidegger. Nanocubes for real-time exploration of spatiotemporal datasets. IEEE Transactions on Visualization and Computer Graphics, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual querying of big data. EuroVis, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presentation for visual analysis. IEEE Transactions on Visualization and Computer Graphics, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Meliou, W. Gatterbauer, and D. Suciu. Reverse data management. PVLDB, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Oliva and A. Torralba. Building the gist of a scene: the role of global image features in recognition. In Progress in Brain Research, 2006.Google ScholarGoogle Scholar
  24. A. Parameswaran, N. Polyzotis, and H. Garcia-Molina. Seedb: Visualizing database queries efficiently. PVLDB, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Sarawagi and G. Sathe. i3: Intelligent, interactive investigaton of olap data cubes. In SIGMOD, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path selection in a relational database management system. In SIGMOD, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. C. Stolte and P. Hanrahan. Polaris: A system for query, analysis and visualization of multi-dimensional relational databases. InfoVis, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Wesley, M. Eldridge, and P. T. Terlecki. An analytic data engine for visualization in tableau. In SIGMOD, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. Wickham. Bin-summarise-smooth: a framework for visualising large data. Technical report, had.co.nz, 2013.Google ScholarGoogle Scholar
  30. L. Wilkinson. The Grammar of Graphics (Statistics and Computing). Springer-Verlag New York, Inc., 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. W. Willett, J. Heer, and M. Agrawala. Strategies for crowdsourcing social data analysis. In CHI, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries. PVLDB, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. E. Wu, S. Madden, and M. Stonebraker. Subzero: A fine-grained lineage system for scientific databases. In ICDE, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 7, Issue 10
    June 2014
    146 pages
    ISSN:2150-8097
    Issue’s Table of Contents

    Publisher

    VLDB Endowment

    Publication History

    • Published: 1 June 2014
    Published in pvldb Volume 7, Issue 10

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader