skip to main content
research-article

Distributed graph simulation: impossibility and possibility

Published:01 August 2014Publication History
Skip Abstract Section

Abstract

This paper studies fundamental problems for distributed graph simulation. Given a pattern query Q and a graph G that is fragmented and distributed, a graph simulation algorithm A is to compute the matches Q(G) of Q in G. We say that A is parallel scalable in (a) response time if its parallel computational cost is determined by the largest fragment Fm of G and the size |Q| of query Q, and (b) data shipment if its total amount of data shipped is determined by |Q| and the number of fragments of G, independent of the size of graph G. (1) We prove an impossibility theorem: there exists no distributed graph simulation algorithm that is parallel scalable in either response time or data shipment. (2) However, we show that distributed graph simulation is partition bounded, i.e., its response time depends only on |Q|, |Fm| and the number |Vf| of nodes in G with edges across different fragments; and its data shipment depends on |Q| and the number |Ef| of crossing edges only. We provide the first algorithms with these performance guarantees. (3) We also identify special cases of patterns and graphs when parallel scalability is possible. (4) We experimentally verify the scalability and efficiency of our algorithms.

References

  1. Amazon. http://aws.amazon.com/ec2/.Google ScholarGoogle Scholar
  2. Facebook statistics. http://www.facebook.com/press/info.php?statistics.Google ScholarGoogle Scholar
  3. Full version. http://www.cs.ucsb.edu/~yinghui/full.pdf.Google ScholarGoogle Scholar
  4. Trinity. research.microsoft.com/en-us/projects/trinity/.Google ScholarGoogle Scholar
  5. V. L. Anh and A. Kiss. Efficient processing regular queries in shared-nothing parallel database systems using tree-and structural indexes. In ADBIS Research Communic, 2007.Google ScholarGoogle Scholar
  6. S. Blom and S. Orzan. A distributed algorithm for strong bisimulation reduction of state spaces. STTT, 7(1), 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Brynielsson, J. Högberg, L. Kaati, C. Martenson, and P. Svenson. Detecting social positions using simulation. In ASONAM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Buluç and K. Madduri. Graph partitioning for scalable distributed graph computations. In Graph Partitioning and Graph Clustering, pages 83--102, 2012.Google ScholarGoogle Scholar
  9. F. Chung, R. Graham, R. Bhagwan, S. Savage, and G. M. Voelker. Maximizing data locality in distributed systems. JCSS, 72(8): 1309--1316, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. G. Cong, W. Fan, and A. Kementsietsidis. Distributed query evaluation with performance guarantees. In SIGMOD, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern matching: From intractable to polynomial time. PVLDB, 3(1), 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. W. Fan, X. Wang, and Y. Wu. Performance guarantees for distributed reachability queries. PVLDB, 5(11), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. W. Fan, X. Wang, and Y. Wu. Incremental graph pattern matching. TODS, 38(3), 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Fard, M. U. Nisar, L. Ramaswamy, J. A. Miller, and M. Saltz. A distributed vertex-centric approach for pattern matching in massive graphs. In Big Data, 2013.Google ScholarGoogle Scholar
  15. S. Flesca, F. Furfaro, and A. Pugliese. A framework for the partial evaluation of SPARQL queries. In SUM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. C. Godskesen and S. Nanz. Mobility models and behavioural equivalence for wireless networks. In Coordination Models and Languages, pages 106--122, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: research problems in data center networks. SIGCOMM Comput. Commun. Rev., 39, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. R. Henzinger, T. Henzinger, and P. Kopke. Computing simulations on finite and infinite graphs. In FOCS, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Jamali. A distributed method for trust-aware recommendation in social networks. CoRR, 2010.Google ScholarGoogle Scholar
  20. R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social networks. In KDD, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Leskovec, A. Singh, and J. Kleinberg. Patterns of influence in a recommendation network. In Advances in Knowledge Discovery and Data Mining, pages 380--389. 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. Hellerstein. Distributed GraphLab: A framework for machine learning and data mining in the cloud. PVLDB, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. J. Luczkovich, S. P. Borgatti, J. C. Johnson, and M. G. Everett. Defining and measuring trophic role similarity in food webs using regular equivalence. Journal of Theoretical Biology, 220(3): 303--321, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  24. S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Capturing topology in graph pattern matching. PVLDB, 5(4), 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Ma, Y. Cao, J. Huai, and T. Wo. Distributed graph pattern matching. In WWW, pages 949--958, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi. Ja-be-ja: A distributed algorithm for balanced graph partitioning. Technical report, Swedish Institute of Computer Science, 2013.Google ScholarGoogle Scholar
  28. M. Rowe and O. Group. Interlinking distributed social graphs. In WWW, 2009.Google ScholarGoogle Scholar
  29. M. Shoaran and A. Thomo. Fault-tolerant computation of distributed regular path queries. TCS, 410(1): 62--77, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. Suciu. Distributed query evaluation on semistructured data. TODS, 27(1):1--62, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Y. Tao, W. Lin, and X. Xiao. Minimal MapReduce algorithms. SIGMOD, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. R. E. Tarjan. Depth-first search and linear graph algorithms. SICOMP, 1(2): 146--160, 1972.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. R. Ullmann. An algorithm for subgraph isomorphism. JACM, 23(1): 31--42, 1976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. V. Venkataramani et al. TAO: how facebook serves the social graph. In SIGMOD, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. D. P. Woodruff and Q. Zhang. When distributed computation is communication expensive. In DISC, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine for web scale rdf data. In VLDB, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Distributed graph simulation: impossibility and possibility
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Proceedings of the VLDB Endowment
      Proceedings of the VLDB Endowment  Volume 7, Issue 12
      August 2014
      296 pages
      ISSN:2150-8097
      Issue’s Table of Contents

      Publisher

      VLDB Endowment

      Publication History

      • Published: 1 August 2014
      Published in pvldb Volume 7, Issue 12

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader