skip to main content
research-article

Multi-objective parametric query optimization

Published:01 November 2014Publication History
Skip Abstract Section

Abstract

Classical query optimization compares query plans according to one cost metric and associates each plan with a constant cost value. In this paper, we introduce the Multi-Objective Parametric Query Optimization (MPQ) problem where query plans are compared according to multiple cost metrics and the cost of a given plan according to a given metric is modeled as a function that depends on multiple parameters. The cost metrics may for instance include execution time or monetary fees; a parameter may represent the selectivity of a query predicate that is unspecified at optimization time.

MPQ generalizes parametric query optimization (which allows multiple parameters but only one cost metric) and multi-objective query optimization (which allows multiple cost metrics but no parameters). We formally analyze the novel MPQ problem and show why existing algorithms are inapplicable. We present a generic algorithm for MPQ and a specialized version for MPQ with piecewise-linear plan cost functions. We prove that both algorithms find all relevant query plans and experimentally evaluate the performance of our second algorithm in a Cloud computing scenario.

References

  1. M. Abhirama, S. Bhaumik, and A. Dey. On the stability of plan costs and the costs of plan stability. PVLDB, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Z. Abul-Basher, Y. Feng, and P. Godfrey. Alternative Query Optimization for Workload Management. In Database and Expert Systems Applications, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  3. S. Agarwal, A. Iyer, and A. Panda. Blink and It's Done: Interactive Queries on Very Large Data. PVLDB, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. Babcock and S. Chaudhuri. Towards a Robust Query Optimizer: a Principled and Practical Approach. SIGMOD Conf., 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Babu, P. Bizarro, and D. DeWitt. Proactive Re-Optimization. SIGMOD Conf., 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Bemporad, K. Fukuda, and F. Torrisi. Convexity Recognition of the Union of Polyhedra. Computational Geometry, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Bizarro, N. Bruno, and D. DeWitt. Progressive Parametric Query Optimization. Trans. on KDE, Apr. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. N. Bruno. Polynomial heuristics for query optimization. In ICDE, pages 589--600, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  9. N. Bruno and R. V. Nehme. Configuration-Parametric Query Optimization for Physical Design Tuning. SIGMOD Conf., 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. F. Chu, J. Halpern, and J. Gehrke. Least Expected Cost Query Optimization: What can we Expect? SIGMOD Conf., 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. R. Cole and G. Graefe. Optimization of dynamic query evaluation plans. 1994.Google ScholarGoogle Scholar
  12. A. Dey, S. Bhaumik, and J. Haritsa. Efficiently Approximating Query Optimizer Plan Diagrams. PVLDB, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Ganguly. Design and Analysis of Parametric Query Optimization Algorithms. PVLDB, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Ganguly, W. Hasan, and R. Krishnamurthy. Query Optimization for Parallel Execution. In SIGMOD Conf., 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Garofalakis and Y. Ioannidis. Multi-Dimensional Resource Scheduling for Parallel Queries. In SIGMOD Conf., 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. G. Graefe and K. Ward. Dynamic Query Evaluation Plans. SIGMOD Conf., 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Hulgeri and S. Sudarshan. Parametric Query Optimization for Linear and Piecewise Linear Cost Functions. PVLDB, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Hulgeri and S. Sudarshan. AniPQO: Almost Non-Intrusive Parametric Query Optimization for Nonlinear Cost Functions. PVLDB, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric Query Optimization. PVLDB, May 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. V. Kaibel and M. Pfetsch. Some algorithmic problems in polytope theory. Algebra, Geometry and Software Systems, 1, 2003.Google ScholarGoogle Scholar
  21. S. Kambhampati, U. Nambiar, Z. Nie, and S. Vaddi. Havasu: A Multi-Objective, Adaptive Query Processing Framework for Web Data Integration. ASU CSE, 2002.Google ScholarGoogle Scholar
  22. H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. E. Ioannidis. Schedule Optimization for Data Processing Flows on the Cloud. In SIGMOD Conf., 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. K. Ono and G. Lohman. Measuring the complexity of join enumeration in query optimization. PVLDB, pages 314--325, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C. Papadimitriou and M. Yannakakis. Multiobjective Query Optimization. PODS, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. N. Reddy and JR. Haritsa. Analyzing plan diagrams of database query optimizers. PVLDB, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access Path Selection in a Relational Database Management System. In SIGMOD Conf., pages 23--34, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Simitsis, P. Vassiliadis, and T. Sellis. State-Space Optimization of ETL Workflows. Trans. on KDE, Oct. 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal. Optimizing Analytic Data Flows for Multiple Execution Engines. SIGMOD Conf., 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized optimization for the join ordering problem. VLDB J., 6(3): 191--208, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. TPC. TPC-H Benchmark, 2013.Google ScholarGoogle Scholar
  31. I. Trummer and C. Koch. Approximation Schemes for Many-Objective Query Optimization. SIGMOD Conf., 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Z. Xu, Y. C. Tu, and X. Wang. PET: Reducing Database Energy Cost via Query Optimization. PVLDB, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 8, Issue 3
    November 2014
    144 pages

    Publisher

    VLDB Endowment

    Publication History

    • Published: 1 November 2014
    Published in pvldb Volume 8, Issue 3

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader