skip to main content
research-article

Coconut: a scalable bottom-up approach for building data series indexes

Published:01 February 2018Publication History
Skip Abstract Section

Abstract

Many modern applications produce massive amounts of data series that need to be analyzed, requiring efficient similarity search operations. However, the state-of-the-art data series indexes that are used for this purpose do not scale well for massive datasets in terms of performance, or storage costs. We pinpoint the problem to the fact that existing summarizations of data series used for indexing cannot be sorted while keeping similar data series close to each other in the sorted order. This leads to two design problems. First, traditional bulk-loading algorithms based on sorting cannot be used. Instead, index construction takes place through slow top-down insertions, which create a non-contiguous index that results in many random I/Os. Second, data series cannot be sorted and split across nodes evenly based on their median value; thus, most leaf nodes are in practice nearly empty. This further slows down query speed and amplifies storage costs. To address these problems, we present Coconut. The first innovation in Coconut is an inverted, sortable data series summarization that organizes data series based on a z-order curve, keeping similar series close to each other in the sorted order. As a result, Coconut is able to use bulk-loading techniques that rely on sorting to quickly build a contiguous index using large sequential disk I/Os. We then explore prefix-based and median-based splitting policies for bottom-up bulk-loading, showing that median-based splitting outperforms the state of the art, ensuring that all nodes are densely populated. Overall, we show analytically and empirically that Coconut dominates the state-of-the-art data series indexes in terms of construction speed, query speed, and storage costs.

References

  1. Incorporated Research Institutions for Seismology - Seismic Data Access. http://ds.iris.edu/data/access/, 2016.Google ScholarGoogle Scholar
  2. Adhd-200. http://fcon_1000.projects.nitrc.org/indi/adhd200/, 2017.Google ScholarGoogle Scholar
  3. Sloan digital sky survey. https://www.sdss3.org/dr10/data_access/volume.php, 2017.Google ScholarGoogle Scholar
  4. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems. Commun. ACM, 31(9):1116--1127, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in sequence databases. In FODO, pages 69--84, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. I. Assent, R. Krieger, F. Afschari, and T. Seidl. The ts-tree: efficient time series search and retrieval. In EDBT, pages 252--263, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Camerra, T. Palpanas, J. Shieh, and E. J. Keogh. isax 2.0: Indexing and mining one billion time series. In ICDM, pages 58--67, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. Keogh. Beyond One Billion Time Series: Indexing and Mining Very Large Time Series Collections with iSAX2+. KAIS, 39(1):123--151, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. K. Chakrabarti, E. J. Keogh, S. Mehrotra, and M. J. Pazzani. Locally adaptive dimensionality reduction for indexing large time series databases. ACM Trans. Database Syst., 27(2):188--228, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3):15, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. Dayan, M. Athanassoulis, and S. Idreos. Monkey: Optimal navigable key-value store. In SIGMOD, pages 79--94, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series databases. In SIGMOD, pages 419--429, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Grabocka, N. Schilling, and L. Schmidt-Thieme. Latent time-series motifs. TKDD, 11(1):6:1--6:20, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD, pages 47--57, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. Huijse, P. A. Estévez, P. Protopapas, J. C. Principe, and P. Zegers. Computational intelligence challenges and applications on large-scale astronomical time series databases. IEEE CIM, 9(3):27--39, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. Idreos, M. L. Kersten, and S. Manegold. Database cracking. In CIDR 2007, pages 68--78, 2007.Google ScholarGoogle Scholar
  17. K. Kashino, G. Smith, and H. Murase. Time-series active search for quick retrieval of audio and video. In ICASSP, pages 2993--2996, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Kashyap and P. Karras. Scalable knn search on vertically stored time series. In SIGKDD, pages 1334--1342, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. J. Kate. Using dynamic time warping distances as features for improved time series classification. Data Min. Knowl. Discov., 30(2):283--312, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. J. Keogh. Fast similarity search in the presence of longitudinal scaling in time series databases. In ICTAI, pages 578--584, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra. Dimensionality reduction for fast similarity search in large time series databases. KAIS, 3(3):263--286, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  22. E. J. Keogh and M. J. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In KDD, pages 239--243, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc queries in large datasets of time sequences. In SIGMOD, pages 289--300, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. T. Leutenegger, J. M. Edgington, and M. A. López. STR: A simple and efficient algorithm for r-tree packing. In ICDE, pages 497--506, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. C. Li, P. S. Yu, and V. Castelli. Hierarchyscan: A hierarchical similarity search algorithm for databases of long sequences. In ICDE, pages 546--553, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. T. W. Liao. Clustering of time series data - a survey. Pattern Recognition, 38(11):1857--1874, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Lin, E. J. Keogh, and W. Truppel. Clustering of streaming time series is meaningless. In DMKD, pages 56--65, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Linardi and T. Palpanas. ULISSE: ULtra compact Index for Variable-Length Similarity SEarch in Data Series. In ICDE, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Linardi, Y. Zhu, T. Palpanas, and E. J. Keogh. Matrix profile X: Valmod - scalable discovery of variable-length motifs in data series. In SIGMOD, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. K. Mirylenka, V. Christophides, T. Palpanas, I. Pefkianakis, and M. May. Characterizing home device usage from wireless traffic time series. In EDBT, pages 551--562, 2016.Google ScholarGoogle Scholar
  31. G. M. Morton. A computer oriented geodetic data base and a new technique in file sequencing. Ottawa, International Business Machines Company, 1966.Google ScholarGoogle Scholar
  32. A. Mueen, H. Hamooni, and T. Estrada. Time series join on subsequence correlation. In ICDM, pages 450--459, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Mueen, E. J. Keogh, Q. Zhu, S. Cash, M. B. Westover, and N. B. Shamlo. A disk-aware algorithm for time series motif discovery. DAMI, 22(1-2):73--105, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Mueen, S. Nath, and J. Liu. Fast approximate correlation for massive time-series data. In SIGMOD, pages 171--182, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. P. E. O'Neil, E. Cheng, D. Gawlick, and E. J. O'Neil. The log-structured merge-tree (lsm-tree). Acta Inf., 33(4):351--385, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. T. Palpanas. Data series management: The road to big sequence analytics. SIGMOD Record, 44(2):47--52, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. T. Palpanas. Big sequence management: A glimpse of the past, the present, and the future. In SOFSEM, pages 63--80, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. T. Palpanas. The parallel and distributed future of data series mining. In HPCS, pages 916--920, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  39. P. Paraskevopoulos, T.-C. Dinh, Z. Dashdorj, T. Palpanas, and L. Serafini. Identification and characterization of human behavior patterns from mobile phone data. In D4D Challenge session, NetMob, 2013.Google ScholarGoogle Scholar
  40. T. Pelkonen, S. Franklin, P. Cavallaro, Q. Huang, J. Meza, J. Teller, and K. Veeraraghavan. Gorilla: A fast, scalable, in-memory time series database. PVLDB, 8(12):1816--1827, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. K. pong Chan and A. W. Fu. Efficient time series matching by wavelets. In ICDE, pages 126--133, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. D. Rafiei. On similarity-based queries for time series data. In ICDE, pages 410--417, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. D. Rafiei and A. O. Mendelzon. Similarity-based queries for time series data. In SIGMOD, pages 13--25, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista, M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh. Searching and mining trillions of time series subsequences under dynamic time warping. In SIGKDD, pages 262--270, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans. Time series epenthesis: Clustering time series streams requires ignoring some data. In ICDM, pages 547--556, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. R. Ramakrishnan and J. Gehrke. Database management systems (3. ed.). McGraw-Hill, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. J. Rao and K. A. Ross. Making b+-trees cache conscious in main memory. In SIGMOD, pages 475--486, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. C. A. Ratanamahatana and E. J. Keogh. Three myths about dynamic time warping data mining. In SIAM, pages 506--510, 2005.Google ScholarGoogle Scholar
  49. K. V. Ravi Kanth, D. Agrawal, and A. Singh. Dimensionality reduction for similarity searching in dynamic databases. In SIGMOD, pages 166--176, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and G. P. Picco. Practical data prediction for real-world wireless sensor networks. IEEE Trans. Knowl. Data Eng., 27(8):2231--2244, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. P. P. Rodrigues, J. Gama, and J. P. Pedroso. Hierarchical clustering of time-series data streams. IEEE Trans. Knowl. Data Eng., 20(5):615--627, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. D. Shasha. Tuning time series queries in finance: Case studies and recommendations. IEEE Data Eng. Bull., 22(2):40--46, 1999.Google ScholarGoogle Scholar
  53. J. Shieh and E. Keogh. iSAX: disk-aware mining and indexing of massive time series datasets. Data Mining and Knowledge Discovery, 19(1):24--57, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. J. Shieh and E. J. Keogh. isax: indexing and mining terabyte sized time series. In ACM SIGKDD, pages 623--631, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. S. Soldi, V. Beckmann, W. Baumgartner, G. Ponti, C. Shrader, P. Lubinski, H. Krimm, F. Mattana, and J. Tueller. Long-term variability of agn at hard x-rays. Astronomy & Astrophysics, 563:A57, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  56. Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang. A data-adaptive and dynamic segmentation index for whole matching on time series. PVLDB, 6(10):793--804, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. X. Xi, E. J. Keogh, C. R. Shelton, L. Wei, and C. A. Ratanamahatana. Fast time series classification using numerosity reduction. In ICML, pages 1033--1040, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. D. E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Palpanas. Dpisax: Massively distributed partitioned isax. In ICDM, pages 1135--1140, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  59. L. Ye and E. J. Keogh. Time series shapelets: a new primitive for data mining. In ACM SIGKDD, pages 947--956, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. K. Zoumpatianos, S. Idreos, and T. Palpanas. Indexing for interactive exploration of big data series. In SIGMOD, pages 1555--1566, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. K. Zoumpatianos, S. Idreos, and T. Palpanas. RINSE: interactive data series exploration with ADS+. PVLDB, 8(12):1912--1915, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. K. Zoumpatianos, S. Idreos, and T. Palpanas. ADS: the adaptive data series index. VLDB J., 25(6):843--866, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. K. Zoumpatianos, Y. Lou, T. Palpanas, and J. Gehrke. Query workloads for data series indexes. In ACM SIGKDD, pages 1603--1612, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. K. Zoumpatianos and T. Palpanas. Data series management: Fulfilling the need for big sequence analytics. In ICDE, 2018.Google ScholarGoogle Scholar

Index Terms

  1. Coconut: a scalable bottom-up approach for building data series indexes
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image Proceedings of the VLDB Endowment
              Proceedings of the VLDB Endowment  Volume 11, Issue 6
              February 2018
              210 pages
              ISSN:2150-8097
              Issue’s Table of Contents

              Publisher

              VLDB Endowment

              Publication History

              • Published: 1 February 2018
              Published in pvldb Volume 11, Issue 6

              Qualifiers

              • research-article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader