skip to main content
research-article
Open Access

Warning signals for poor performance improve human-robot interaction

Published:01 September 2016Publication History
Skip Abstract Section

Abstract

The present research was aimed at investigating whether human-robot interaction (HRI) can be improved by a robot's nonverbal warning signals. Ideally, when a robot signals that it cannot guarantee good performance, people could take preventive actions to ensure the successful completion of the robot's task. In two experiments, participants learned either that a robot's gestures predicted subsequent poor performance, or they did not. Participants evaluated a robot that uses predictive gestures as more trustworthy, understandable, and reliable compared to a robot that uses gestures that are not predictive of their performance. Finally, participants who learned the relation between gestures and performance improved collaboration with the robot through prevention behavior immediately after a predictive gesture. This limits the negative consequences of the robot's mistakes, thus improving the interaction.

References

  1. Aldebaran Robotics (2013). WeBots for Nao. Retrieved from http://doc.aldebaran.com/1-14/software/webots/webots_index.htmlGoogle ScholarGoogle Scholar
  2. Aron, A., Aron, E., & Smollan, D. (1992). Inclusion of other in the self scale and the structure of interpersonal closeness. Journal of Personality and Social Psychology, 63(4), 596--612. Retrieved from http://psycnet.apa.org/journals/psp/63/4/596/Google ScholarGoogle ScholarCross RefCross Ref
  3. Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International Journal of Social Robotics, 1(1), 71--81.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bluemke, M., & Friese, M. (2008). Reliability and validity of the Single-Target IAT (ST-IAT): Assessing automatic affect towards multiple attitude objects. European Journal of Social Psychology, 38, 977--997.Google ScholarGoogle ScholarCross RefCross Ref
  5. Chapman, L. J., & Chapman, J. P. (1967). Genesis of popular but erroneous psychodiagnostic observations. Journal of Abnormal Psychology, 72(3), 193--204.Google ScholarGoogle ScholarCross RefCross Ref
  6. Dautenhahn, K. (2007). Methodology and themes of human-robot interaction: A growing research field. International Journal of Advanced Robotic Systems, 4(1), 103--108.Google ScholarGoogle ScholarCross RefCross Ref
  7. De Jong, P. J., Merckelbach, H., & Arntz, A. (1990). Illusory correlation, on-line probability estimates, and electrodermal responding in a (quasi)-conditioning paradigm. Biological Psychology, 31, 201--212.Google ScholarGoogle ScholarCross RefCross Ref
  8. DeSteno, D., Breazeal, C., Frank, R. H., Pizarro, D., Baumann, J., Dickens, L., & Lee, J. J. (2012). Detecting the trustworthiness of novel partners in economic exchange. Psychological Science, 20(10), 1--8.Google ScholarGoogle Scholar
  9. Dovidio, J. F., Kawakami, K., & Gaertner, S. L. (2002). Implicit and explicity prejudice and interractial interaction. Journal of Personality and Social Psychology, 82(1), 62--68.Google ScholarGoogle ScholarCross RefCross Ref
  10. Ellis, N. (2008). Implicit and explicit knowledge about language. In J. Cenoz & N. H. Hornberger (Eds.), Encyclopedia of language and education (2nd ed., Vol. 6, pp. 1878--1890). US: Springer.Google ScholarGoogle Scholar
  11. Ekman, P., Friesen, W. V., & O'Sullivan, M. (1988). Smiles when lying. Journal of Personality and Social Psychology, 54(3), 414--420.Google ScholarGoogle ScholarCross RefCross Ref
  12. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175--91. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17695343Google ScholarGoogle ScholarCross RefCross Ref
  13. Feldman, R. S., & Rimé, B. (1991). Fundamentals of nonverbal behavior. Cambridge, MA: Cambridge University Press.Google ScholarGoogle Scholar
  14. Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive robots. Robotics and Autonomous Systems, 42(3), 143--166.Google ScholarGoogle ScholarCross RefCross Ref
  15. Grillon, C., Baas, J. P., Lissek, S., Smith, K., & Milstein, J. (2004). Anxious responses to predictable and unpredictable aversive events. Behavioral Neuroscience, 118(5), 916--924.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hancock, P. A., Billings, D. R., Schaefer, K. E., Chen, J. Y. C., de Visser, E. J., & Parasuraman, R. (2011). A meta-analysis of factors affecting trust in human-robot interaction. Human Factors, 53(5), 517--527.Google ScholarGoogle ScholarCross RefCross Ref
  17. Hanley, J., & McNeil, B. (1983). A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148(3), 839--843. Retrieved from http://www.medicine.mcgill.ca/epidemiology/hanley/Reprints/Method_of_Comparing_1983.pdfGoogle ScholarGoogle ScholarCross RefCross Ref
  18. Hanley, J., & McNeil, B. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29--36. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+Meaning+and+Use+of+the+Area+under+a+Receiver+Operating+Characteristic+(ROC)+Curve#2Google ScholarGoogle ScholarCross RefCross Ref
  19. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1--55.Google ScholarGoogle ScholarCross RefCross Ref
  20. Jian, J.-Y., Bisantz, A. M., & Drury, C. G. (2000). Foundations for an empirically determined scale of trust in automated systems. International Journal of Cognitive Ergonomics, 4(1), 53--71.Google ScholarGoogle ScholarCross RefCross Ref
  21. Jung, M. F., Sirkin, D., Gür, T. M., & Steinert, M. (2015). Displayed uncertainty improves driving experience and behavior: The case of range anxiety in an electric car. In Proceedings of the ACM CHI'15 Conference on Human Factors in Computing Systems (Vol. 1, pp. 2201--2210). Seoul, South Korea: Crossings. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kervyn, N., Yzerbyt, V. Y., Demoulin, S., & Judd, C. M. (2008). Competence and warmth in context: The compensatory nature of stereotypic views of national groups. European Journal of Social Psychology, 83, 1175--1183.Google ScholarGoogle ScholarCross RefCross Ref
  23. Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human Factors, 46(1), 50--80.Google ScholarGoogle ScholarCross RefCross Ref
  24. Ligthart, M., Van den Brule, R., & Haselager, W. F. G. (2013). Human-robot trust: Is motion fluency an effective behavioral style for regulating robot trustworthiness? In K. Hindriks, M. De Weerdt, B. Van Riemsdijk, & M. Warnier (Eds.), Proceedings of the 25th Benelux Conference on Artificial Intelligence (BNAIC) (pp. 112--119). Delft, The Netherlands.Google ScholarGoogle Scholar
  25. Madsen, M., & Gregor, S. (2000). Measuring human-computer trust. In Gable, G., Viatle, M. (Eds.). Proceedings of the 11 th Australasian Conference on Information Systems (pp. 6--8). Brisbane, Australia.Google ScholarGoogle Scholar
  26. Mayer, R., Davis, J., & Schoorman, F. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709--734.Google ScholarGoogle ScholarCross RefCross Ref
  27. Moon, A., Panton, B., Van der Loos, H. F. M., & Croft, E. A. (2010). Using hesitation gestures for safe and ethical human-robot interaction. In Proceedings of ICRA (pp. 11--13). Retrieved from http://www.sites.mech.ubc.ca/~caris/Publications/Using Hesitation Gestures for Safe and Ethical Human-Robot Interaction.pdfGoogle ScholarGoogle Scholar
  28. Muir, B. M. (1994). Trust in automation: Part I. Theoretical issues in the study of trust and human intervention in automated systems. Ergonomics, 37(11), 1905--1922.Google ScholarGoogle ScholarCross RefCross Ref
  29. Oosterhof, N. N., & Todorov, A. (2008). The functional basis of face evaluation. Proceedings of the National Academy of Sciences, 105(32), 11087--11092.Google ScholarGoogle ScholarCross RefCross Ref
  30. Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, abuse. Human Factors, 39(2), 230--253.Google ScholarGoogle ScholarCross RefCross Ref
  31. Pavlov, I. P. (1927). Conditional reflexes: An investigation of the psychological activity of the cerebral cortex. (C. D. Green, Ed.). Oxford University Press. Retrieved from http://psychclassics.yorku.ca/PavlovGoogle ScholarGoogle Scholar
  32. Payne, B. K., & Gawronski, B. (2010). A history of implicit social cognition: Where is it coming from? Where is it now? Where is it going? In B. Gawronski & B. K. Payne (Eds.). Handbook of implicit social cognition: Measurement, theory, and applications (pp.1--14). New York, NY: Guilford Press.Google ScholarGoogle Scholar
  33. Rescorla, R. A. (1968). Probability of shock in the presence and absence of CS in fear conditioning. Journal of Comparative and Physiological Psychology, 66(1), 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  34. Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1--36.Google ScholarGoogle ScholarCross RefCross Ref
  35. Sanders, T. L., Oleson, K. E., Billings, D. R., Chen, J. Y. C., & Hancock, P. A. (2011). A model of human-robot trust: Theoretical model development. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 55(1), 1432--1436.Google ScholarGoogle ScholarCross RefCross Ref
  36. Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8(2), 23--74.Google ScholarGoogle Scholar
  37. Schlencker, B. R., Helm, B., & Tedeschi, J. T. (1973). Interpersonal trust, promise credibility, and behavioral trust. Journal of Personality and Social Psychology, 25, 419--427.Google ScholarGoogle Scholar
  38. Shanks, D. R. (2007). Associationism and cognition: Human contingency learning at 25. Quarterly Journal of Experimental Psychology, 60(3), 291--309.Google ScholarGoogle ScholarCross RefCross Ref
  39. Sheridan, T. B. (1988). Trustworthiness of command and control systems. In Proceedings of the IFAC/IFIP/IEA/IFORS Conference on Analysis (pp. 427--431). Pergamon, Elmsford, NY.Google ScholarGoogle ScholarCross RefCross Ref
  40. Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological science, 20(10), 1--8.Google ScholarGoogle Scholar
  41. Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137--149. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10495845Google ScholarGoogle ScholarCross RefCross Ref
  42. Stanton, C., & Stevens, C. J. (2014, October). Robot pressure: The impact of robot eye gaze and lifelike bodily movements upon decision-making and trust. In Proceedings of the International Conference on Social Robotics (pp. 330--339). Sydney, NSW, Australia: Springer International Publishing.Google ScholarGoogle Scholar
  43. Strack, F., & Deutsch, R. (2004). Reflective and impulsive determinants of social behavior. Personality and Social Psychology Review: An Official Journal of the Society for Personality and Social Psychology, Inc, 8(3), 220--247.Google ScholarGoogle Scholar
  44. Sung, J., Grinter, R. E., & Christensen, H. I. (2010). Domestic robot ecology. International Journal of Social Robotics, 2(4), 417--429.Google ScholarGoogle ScholarCross RefCross Ref
  45. Syrdal, D. S., Koay, K. L., Gácsi, M., Walters, M. L., & Dautenhahn, K. (2010). Video prototyping of dog-inspired non-verbal affective communication for an appearance constrained robot. In Proceedings of the 19th IEEE International Symposium on Robot and Human Interative Communication (pp. 632--637). Principe de Piemonte, Italy.Google ScholarGoogle ScholarCross RefCross Ref
  46. Takayama, L., Dooley, D., & Ju, W. (2011). Expressing thought: Improving robot readability with animation principles. In Proceedings of Human-Robot Interaction Conference: HRI 2011 (pp. 69--76). Lausanne, Switzerland. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Tellex, S., Knepper, R., Li, A., Howard, T., Rus, D., & Roy, N. (2014). Asking for help using inverse semantics. Robotics: Science and Systems, 2, 3. Retrieved from http://cs.brown.edu/courses/csci2951-k/papers/tellex14.pdfGoogle ScholarGoogle Scholar
  48. Torrey, C., Fussell, S. R., & Kiesler, S. (2013). How a robot should give advice. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (pp. 275--282). Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Van den Brule, R., Bijlstra, G., Dotsch, R., Wigboldus, D. H. J., & Haselager, W. F. G. (2013). Signaling robot trustworthiness: Effects of behavioral cues as warnings. In G. Herrmann, M. Pearson, A. Lenz, P. Bremner, A. Spiers, & U. Leonards (Eds.), LNCS 8239: Social Robotics (pp. 583--584). Springer.Google ScholarGoogle Scholar
  50. Van den Brule, R., Dotsch, R., Bijlstra, G., Wigboldus, D. H. J., & Haselager, W. F. G. (2014). Do robot performance and behavioral style affect human trust? A multi-method approach. International Journal of Social Robotics, 6(4), 519--531.Google ScholarGoogle ScholarCross RefCross Ref
  51. Wigboldus, D. H. J., Holland, R. W., & Van Knippenberg, A. (2006). Single target implicit associations. Unpublished manuscript.Google ScholarGoogle Scholar
  52. Woods, S. N., Walters, M. L., Koay, K. L., & Dautenhahn, K. (2006). Comparing human robot interaction scenarios using live and video based methods: Towards a novel methodological approach. In Proceedings of the 9th IEEE International Workshop on Advanced Motion Control (AMC'06) (pp. 750--755). Istanbul, Turkey: New York, NY: IEEE Press.Google ScholarGoogle ScholarCross RefCross Ref
  53. Xu, Q., Ng, J., Tan, O., Huang, Z., Tay, B., & Park, T. (2014). Methodological issues in scenario-based evaluation of human--robot interaction. International Journal of Social Robotics.Google ScholarGoogle Scholar
  54. Yamaji, Y., Miyake, T., Yoshiike, Y., de Silva, P. R. S., & Okada, M. (2011). STB: Child-dependent sociable trash box. International Journal of Social Robotics, 3(4), 359--370.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader