skip to main content
10.1145/1921168.1921187acmconferencesArticle/Chapter ViewAbstractPublication PagesconextConference Proceedingsconference-collections
research-article

LEGUP: using heterogeneity to reduce the cost of data center network upgrades

Published:30 November 2010Publication History

ABSTRACT

Fundamental limitations of traditional data center network architectures have led to the development of architectures that provide enormous bisection bandwidth for up to hundreds of thousands of servers. Because these architectures rely on homogeneous switches, implementing one in a legacy data center usually requires replacing most existing switches. Such forklift upgrades are typically prohibitively expensive; instead, a data center manager should be able to selectively add switches to boost bisection bandwidth. Doing so adds heterogeneity to the network's switches and heterogeneous high-performance interconnection topologies are not well understood. Therefore, we develop the theory of heterogeneous Clos networks. We show that our construction needs only as much link capacity as the classic Clos network to route the same traffic matrices and this bound is the optimal. Placing additional equipment in a highly constrained data center is challenging in practice, however. We propose LEGUP to design the topology and physical arrangement of such network upgrades or expansions. Compared to current solutions, we show that LEGUP finds network upgrades with more bisection bandwidth for half the cost. And when expanding a data center iteratively, LEGUP's network has 265% more bisection bandwidth than an iteratively upgraded fat-tree.

References

  1. J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber. Hyperx: topology, routing, and packaging of efficient large-scale networks. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (SC '09), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. In SIGCOMM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. V. E. Beneš. Mathematical Theory of Connecting Networks and Telephone Traffics. Academic Press, 1965.Google ScholarGoogle Scholar
  4. T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data center traffic characteristics. In Proceedings of the 1st ACM workshop on Research on enterprise networking (WREN), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. Clos. A study of non-blocking switching networks. Bell System Technical Journal, 32(5):406--424, 1953.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. R. Curtis, S. Keshav, and A. López-Ortiz. LEGUP: Using heterogeneity to reduce the cost of data center network upgrades. Technical report, University of Waterloo, 2010.Google ScholarGoogle Scholar
  7. N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and J. E. van der Merive. A flexible model for resource management in virtual private networks. In SIGCOMM, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. L. Epstein and A. Levin. An APTAS for generalized cost variable-sized bin packing. SIAM J. Comput., 38(1):411--428, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Ford, C. Raiciu, M. Handley, and S. Barre. TCP extensions for multipath operation with multiple addresses. IETF, 2009.Google ScholarGoogle Scholar
  10. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible data center network. In SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. G. Greenberg, J. R. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: research problems in data center networks. Computer Communication Review, 39(1):68--73, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. BCube: a high performance, server-centric network architecture for modular data centers. In SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a scalable and fault-tolerant network structure for data centers. In SIGCOMM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. K. Holmberg and D. Yuan. A lagrangian heuristic based branch-and-bound approach for the capacitated network design problem. Operations Research, 48(3):461--481, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. F. K. Hwang and D. S. Richards. Steiner tree problems. Networks, 22(1):55--89, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  17. D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. on Comput., 3(4):299--325, 1974.Google ScholarGoogle ScholarCross RefCross Ref
  18. S. Kandula, S. Sengupta, A. Greenberg, and P. Patel. The nature of datacenter traffic: Measurements & analysis. In IMC, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Kershenbaum. Telecommunications network design algorithms. McGraw-Hill, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Kim, W. J. Dally, and D. Abts. Flattened butterfly: a cost-efficient topology for high-radix networks. SIGARCH Comput. Archit. News, 35(2), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Kodialam, T. V. Lakshman, and S. Sengupta. Maximum throughput routing of traffic in the hose model. In Infocom, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  22. E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations Research, 14(4):699--719, 1966.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing. IEEE Trans. Comput., 34(10):892--901, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul. SPAIN: COTS data-center ethernet for multipathing over arbitrary topologies. In NSDI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, and V. Subram. Portland: A scalable fault-tolerant layer 2 data center network fabric. In SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, and M. Handley. Data center networking with multipath TCP. In Hotnets, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Rasala and G. Wilfong. Strictly non-blocking WDM cross-connects for heterogeneous networks. In STOC, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying NOX to the datacenter. In HotNets-VIII, 2009.Google ScholarGoogle Scholar
  29. H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. MDCube: a high performance network structure for modular data center interconnection. In CoNEXT, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. Zhang-Shen and N. McKeown. Designing a predictable internet backbone with Valiant load-balancing. In Thirteenth International Workshop on Quality of Service (IWQoS '05), 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. LEGUP: using heterogeneity to reduce the cost of data center network upgrades

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        Co-NEXT '10: Proceedings of the 6th International COnference
        November 2010
        349 pages
        ISBN:9781450304481
        DOI:10.1145/1921168

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 30 November 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate198of789submissions,25%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader