skip to main content
article

Multilevel local search algorithms for modularity clustering

Authors Info & Claims
Published:27 July 2011Publication History
Skip Abstract Section

Abstract

Modularity is a widely used quality measure for graph clusterings. Its exact maximization is NP-hard and prohibitively expensive for large graphs. Popular heuristics first perform a coarsening phase, where local search starting from singleton clusters is used to compute a preliminary clustering, and then optionally a refinement phase, where this clustering is improved by moving vertices between clusters. As a generalization, multilevel heuristics coarsen in several stages, and refine by moving entire clusters from each of these stages, not only individual vertices.

This article organizes existing and new single-level and multilevel heuristics into a coherent design space, and compares them experimentally with respect to their effectiveness (achieved modularity) and runtime. For coarsening by iterated cluster joining, it turns out that the most widely used criterion for joining clusters (modularity increase) is outperformed by other simple criteria, that a recent multistep algorithm [Schuetz and Caflisch 2008] is no improvement over simple single-step coarsening for these criteria, and that the recent multilevel coarsening by iterated vertex moving [Blondel et al. 2008] is somewhat faster but slightly less effective (with refinement). The new multilevel refinement is significantly more effective than the conventional single-level refinement or no refinement, in reasonable runtime.

A comparison with published benchmark results and algorithm implementations shows that multilevel local search heuristics, despite their relative simplicity, are competitive with the best algorithms in the literature.

References

  1. Aarts, E. and Lenstra, J. K., Eds. 2003. Local Search in Combinatorial Optimization. Princeton University Press, Princeton, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Agarwal, G. and Kempe, D. 2008. Modularity-maximizing graph communities via mathematical programming. Eur. Phys. J. B 66, 3, 409--418.Google ScholarGoogle ScholarCross RefCross Ref
  3. Albert, R., Jeong, H., and Barabási, A.-L. 1999. Diameter of the World-Wide Web. Nature 401, 6749, 130--131.Google ScholarGoogle Scholar
  4. Arenas, A., Fernández, A., and Gómez, S. 2008. Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10, 053039.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bader, D. and Madduri, K. 2008. SNAP, Small-world Network Analysis and Partitioning: An open-source parallel graph framework for the exploration of large-scale networks. In Proceedings of the IEEE International Symposium on Parallel and Distributed Processing (IPDPS'08). IEEE, Los Alamitos, CA, 1--12.Google ScholarGoogle Scholar
  6. Barber, M. and Clark, J. 2009. Detecting network communities by propagating labels under constraints. Phys. Rev. E 80, 2, 026129.Google ScholarGoogle ScholarCross RefCross Ref
  7. Batagelj, V. and Mrvar, A. 2006. Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/.Google ScholarGoogle Scholar
  8. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. 2008. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. P10008.Google ScholarGoogle ScholarCross RefCross Ref
  9. Boettcher, S. and Percus, A. G. 2001. Optimization with extremal dynamics. Phys. Rev. Lett. 86, 5211--5214.Google ScholarGoogle ScholarCross RefCross Ref
  10. Boguñá, M., Pastor-Satorras, R., Díaz-Guilera, A., and Arenas, A. 2004. Models of social networks based on social distance attachment. Phys. Rev. E 70, 056122.Google ScholarGoogle ScholarCross RefCross Ref
  11. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., and Wagner, D. 2008. On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 2, 172--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Brandes, U., Gaertler, M., and Wagner, D. 2007. Engineering graph clustering: Models and experimental evaluation. ACM J. Exp. Algorithmics 12, 1.1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Clauset, A., Newman, M. E. J., and Moore, C. 2004. Finding community structure in very large networks. Phys. Rev. E 70, 066111.Google ScholarGoogle ScholarCross RefCross Ref
  14. Csárdi, G. and Nepusz, T. 2006. The igraph software package for complex network research. Inter. Complex Syst. 1695.Google ScholarGoogle Scholar
  15. Danon, L., Díaz-Guilera, A., and Arenas, A. 2006. Effect of size heterogeneity on community identification in complex networks. J. Stat. Mech. Theory Exp. P11010.Google ScholarGoogle ScholarCross RefCross Ref
  16. Danon, L., Díaz-Guilera, A., Duch, J., and Arenas, A. 2005. Comparing community structure identification. J. Stat. Mech. Theory Exp. P09008.Google ScholarGoogle ScholarCross RefCross Ref
  17. Dawes, B., Niebler, E., Rivera, R., and James, D. 2009. BOOST C++ Libraries. http://www.boost.org.Google ScholarGoogle Scholar
  18. Delling, D., Gaertler, M., Görke, R., and Wagner, D. 2008. Engineering comparators for graph clusterings. In Proceedings of the 4th International Conference on Algorithmic Aspects in Information and Management (AAIM'08). Springer-Verlag, Berlin, 131--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. DiCiccio, T. J. and Efron, B. 1996. Bootstrap confidence intervals. Stat. Sci. 11, 3, 189--228.Google ScholarGoogle ScholarCross RefCross Ref
  20. Djidjev, H. N. 2008. A scalable multilevel algorithm for graph clustering and community structure detection. In Proceedings of the 4th International Workshop on Algorithms and Models for the Web-Graph (WAW'06). Springer-Verlag, Berlin, 117--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Donetti, L. and Muñoz, M. A. 2004. Detecting network communities: a new systematic and efficient algorithm. J. Stat. Mech. Theory Exp. P10012.Google ScholarGoogle ScholarCross RefCross Ref
  22. Donetti, L. and Muñoz, M. A. 2005. Improved spectral algorithm for the detection of network communities. Proc. AIP 779, 1, 104--107.Google ScholarGoogle ScholarCross RefCross Ref
  23. Duch, J. and Arenas, A. 2005. Community detection in complex networks using extremal optimization. Phys. Rev. E 72, 027104.Google ScholarGoogle ScholarCross RefCross Ref
  24. Fortunato, S. and Barthélemy, M. 2007. Resolution limit in community detection. Proc. National Acad. Sci. 104, 1, 36--41.Google ScholarGoogle ScholarCross RefCross Ref
  25. Gaertler, M. 2005. Clustering. In Network Analysis: Methodological Foundations, U. Brandes and T. Erlebach, Eds. Springer-Verlag, Berlin, 178--215.Google ScholarGoogle Scholar
  26. Gaertler, M., Görke, R., and Wagner, D. 2007. Significance-driven graph clustering. In Proceedings of the 3rd International Conference on Algorithmic Aspects in Information and Management (AAIM'07). Springer-Verlag, Berlin, 11--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Girvan, M. and Newman, M. E. J. 2002. Community structure in social and biological networks. Proc. National Acad. Sci. 99, 12, 7821--7826.Google ScholarGoogle ScholarCross RefCross Ref
  28. Gleiser, P. and Danon, L. 2003. Community structure in jazz. Adv. Complex Syst. 6, 4, 565--573.Google ScholarGoogle ScholarCross RefCross Ref
  29. Grossman, J. 2007. The Erdős number project. http://www.oakland.edu/enp/.Google ScholarGoogle Scholar
  30. Guimerà, R. and Amaral, L. A. N. 2005. Functional cartography of complex metabolic networks. Nature 433, 7028, 895--900.Google ScholarGoogle Scholar
  31. Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F., and Arenas, A. 2003. Self-similar community structure in a network of human interactions. Phys. Rev. E 68, 065103.Google ScholarGoogle ScholarCross RefCross Ref
  32. Hendrickson, B. and Leland, R. W. 1995. A multilevel algorithm for partitioning graphs. In Proceedings of the 1995 ACM/IEEE Conference on Supercomputing (Supercomputing'95). ACM, New York, 28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Kannan, R., Vempala, S., and Vetta, A. 2004. On clusterings: Good, bad and spectral. J. ACM 51, 3, 497--515. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Karrer, B. and Newman, M. E. J. 2009. Random acyclic networks. Phys. Rev. Lett. 102, 12, 128701.Google ScholarGoogle ScholarCross RefCross Ref
  35. Karypis, G. and Kumar, V. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 1, 359--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Kernighan, B. and Lin, S. 1970. An efficient heuristic procedure for partitioning graphs. Bell Sys. Techn. J. 49, 2, 291--307.Google ScholarGoogle ScholarCross RefCross Ref
  37. Kirkpatrick, S., Gelatt, Jr., C. D., and Vecchi, M. P. 1983. Optimization by simulated annealing. Science 220, 4598, 671--680.Google ScholarGoogle Scholar
  38. Krebs, V. 2008. A network of books about recent US politics sold by the online bookseller amazon.com. http://www.orgnet.com/.Google ScholarGoogle Scholar
  39. Lancichinetti, A. and Fortunato, S. 2009a. Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80, 016118.Google ScholarGoogle ScholarCross RefCross Ref
  40. Lancichinetti, A. and Fortunato, S. 2009b. Community detection algorithms: A comparative analysis. Phys. Rev. E 80, 056117.Google ScholarGoogle ScholarCross RefCross Ref
  41. Liu, X. and Murata, T. 2010. Advanced modularity-specialized label propagation algorithm for detecting communities in networks. Physica A 389, 7, 1493--1500.Google ScholarGoogle ScholarCross RefCross Ref
  42. Lü, Z. and Huang, W. 2009. Iterated tabu search for identifying community structure in complex networks. Phys. Rev. E 80, 026130.Google ScholarGoogle ScholarCross RefCross Ref
  43. Lusseau, D., Schneider, K., Boisseau, O. J., Haase, P., Slooten, E., and Dawson, S. M. 2003. The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54, 396--405.Google ScholarGoogle ScholarCross RefCross Ref
  44. Massen, C. P. and Doye, J. P. K. 2005. Identifying communities within energy landscapes. Phys. Rev. E 71, 046101.Google ScholarGoogle ScholarCross RefCross Ref
  45. Medus, A., Acuña, G., and Dorso, C. O. 2005. Detection of community structures in networks via global optimization. Physica A 358, 2-4, 593--604.Google ScholarGoogle ScholarCross RefCross Ref
  46. Mei, J., He, S., Shi, G., Wang, Z., and Li, W. 2009. Revealing network communities through modularity maximization by a contraction--dilation method. New J. Phys. 11, 043025.Google ScholarGoogle ScholarCross RefCross Ref
  47. Newman, M. E. J. 2001. The structure of scientific collaboration networks. Proc. National Acad. Sci. 98, 2, 404--409.Google ScholarGoogle ScholarCross RefCross Ref
  48. Newman, M. E. J. 2004a. Analysis of weighted networks. Phys. Rev. E 70, 056131.Google ScholarGoogle ScholarCross RefCross Ref
  49. Newman, M. E. J. 2004b. Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133.Google ScholarGoogle ScholarCross RefCross Ref
  50. Newman, M. E. J. 2006a. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104.Google ScholarGoogle ScholarCross RefCross Ref
  51. Newman, M. E. J. 2006b. Modularity and community structure in networks. Proc. National Acad. Sci. 103, 23, 8577--8582.Google ScholarGoogle ScholarCross RefCross Ref
  52. Newman, M. E. J. and Girvan, M. 2004. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113.Google ScholarGoogle ScholarCross RefCross Ref
  53. Noack, A. 2007a. Energy models for graph clustering. J. Graph Algorithms Appl. 11, 2, 453--480.Google ScholarGoogle ScholarCross RefCross Ref
  54. Noack, A. 2007b. Unified quality measures for clusterings, layouts, and orderings, and their application as software design criteria. Ph.D. thesis, Brandenburg University of Technology.Google ScholarGoogle Scholar
  55. Noack, A. 2009. Modularity clustering is force-directed layout. Phys. Rev. E 79, 026102.Google ScholarGoogle ScholarCross RefCross Ref
  56. Pons, P. and Latapy, M. 2006. Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10, 2, 191--218.Google ScholarGoogle ScholarCross RefCross Ref
  57. Porter, M. A., Onnela, J.-P., and Mucha, P. J. 2009. Communities in networks. Not. Amer. Math. Soc. 56, 9, 1082--1097.Google ScholarGoogle Scholar
  58. Preis, R. and Diekmann, R. 1997. PARTY—A software library for graph partitioning. B. Topping, Ed. Advances in Computational Mechanics with Parallel and Distributed Processing, Civil-Comp Press, United Kingdom, 63--71.Google ScholarGoogle Scholar
  59. Pujol, J. M., Béjar, J., and Delgado, J. 2006. Clustering algorithm for determining community structure in large networks. Phys. Rev. E 74, 016107.Google ScholarGoogle ScholarCross RefCross Ref
  60. Reichardt, J. and Bornholdt, S. 2006. Statistical mechanics of community detection. Phys. Rev. E 74, 016110.Google ScholarGoogle ScholarCross RefCross Ref
  61. Richardson, T., Mucha, P., and Porter, M. 2009. Spectral tripartitioning of networks. Phys. Rev. E 80, 036111.Google ScholarGoogle ScholarCross RefCross Ref
  62. Rotta, R. 2008. A multi-level algorithm for modularity graph clustering. M.S. thesis, Brandenburg University of Technology.Google ScholarGoogle Scholar
  63. Schaeffer, S. E. 2007. Graph clustering. Comput. Sci. Rev. 1, 1, 27--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Schuetz, P. and Caflisch, A. 2008a. Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement. Phys. Rev. E 77, 046112.Google ScholarGoogle ScholarCross RefCross Ref
  65. Schuetz, P. and Caflisch, A. 2008b. Multistep greedy algorithm identifies community structure in real-world and computer-generated networks. Phys. Rev. E 78, 026112.Google ScholarGoogle ScholarCross RefCross Ref
  66. Siek, J., Lee, L., and Lumsdaine, A. 2002. The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley, Upper Saddle River, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Sun, Y., Danila, B., Josić, K., and Bassler, K. 2009. Improved community structure detection using a modified fine-tuning strategy. EPL (Europhysics Letters) 86, 28004.Google ScholarGoogle ScholarCross RefCross Ref
  68. Wakita, K. and Tsurumi, T. 2007. Finding community structure in mega-scale social networks. http://www2007.org/posters/poster950.pdf.Google ScholarGoogle Scholar
  69. Walshaw, C. and Cross, M. 2000. Mesh partitioning: A multilevel balancing and refinement algorithm. SIAM J. Sci. Comput. 22, 1, 63--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. White, S. and Smyth, P. 2005. A spectral clustering approach to finding communities in graphs. In Proceedings of the 5th SIAM International Conference on Data Mining (SDM'05). SIAM, Philadelphia, 274--285.Google ScholarGoogle Scholar
  71. Xu, G., Tsoka, S., and Papageorgiou, L. G. 2007. Finding community structures in complex networks using mixed integer optimisation. Eur. Phys. J. B 60, 2, 231--239.Google ScholarGoogle ScholarCross RefCross Ref
  72. Ye, Z., Hu, S., and Yu, J. 2008. Adaptive clustering algorithm for community detection in complex networks. Phys. Rev. E 78, 046115.Google ScholarGoogle ScholarCross RefCross Ref
  73. Zachary, W. W. 1977. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452--473.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Multilevel local search algorithms for modularity clustering

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Journal of Experimental Algorithmics
          ACM Journal of Experimental Algorithmics  Volume 16, Issue
          2011
          411 pages
          ISSN:1084-6654
          EISSN:1084-6654
          DOI:10.1145/1963190
          Issue’s Table of Contents

          Copyright © 2011 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2011
          Published in jea Volume 16, Issue

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader