Skip to main content

Advertisement

Log in

Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

A Commentary to this article was published on 16 October 2014

Abstract

Background and aims

Numerous microorganisms have been isolated from trinitrotoluene (TNT)-contaminated soils, however TNT tends to persist, indicating that the microbial biomass or activity is insufficient for degradation. Deep-rooting trees at military sites have been found to take-up contaminants from groundwater, and the extensive root and endosphere provide ideal niches for microbial TNT-transformations.

Methods

We characterised the rhizosphere, root endosphere and endo-phyllosphere bacteria of Acer pseudoplatanus growing at a historically TNT-contaminated location, using 16S rRNA gene fingerprinting, bacteria isolation, oxidoreductase gene-cloning, in planta growth-promotion (PGP) tests, inoculation, plant physiology measurements and microscopy.

Results

Based on terminal-restriction-fragment-length-polymorphism analysis, bulk soil and rhizosphere samples were highly clustered. Proteo- and Actinobacteria dominated the rhizosphere and root endosphere, whereas Alphaproteobacteria were more abundant in shoots and Actinobacteria in leaves. We isolated multiple PGP-bacteria and cloned 5 flavin-oxidoreductases belonging to the Old Yellow Enzyme family involved in TNT-reduction from 3 Pseudomonas spp., the leaf symbiont Stenotrophomonas chelatiphaga and the root endophyte Variovorax ginsengisola.

Conclusions

The inoculation with a selection of these strains, consortium CAP9, which combines efficient TNT-transformation capabilities with beneficial PGP-properties, has the ability to detoxify TNT in the bent grass (Agrostis capillaris) rhizosphere, stimulate plant growth and improve plant health under TNT stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali NA, Dewez D, Robidoux PY, Popovic R (2006) Photosynthetic parameters as indicators of trinitrotoluene (TNT) inhibitory effect: change in chlorophyll a fluorescence induction upon exposure of lactuca sativa to TNT. Ecotoxicology 15:437–441. doi:10.1007/s10646-006-0065-5

    CAS  PubMed  Google Scholar 

  • Altamirano M, Garcia-Villada L, Agrelo M, Sanchez-Martin L, Martin-Otero L, Flores-Moya A, Rico M, Lopez-Rodas V, Costas E (2004) A novel approach to improve specificity of algal biosensors using wild-type and resistant mutants: an application to detect TNT. Biosens Bioelectron 19:1319–1323. doi:10.1016/j.bios.2003.11.001

    CAS  PubMed  Google Scholar 

  • Ayoub K, van Hullebusch ED, Cassir M, Bermond A (2010) Application of advanced oxidation processes for TNT removal: a review. J Hazard Mater 178:10–28. doi:10.1016/j.jhazmat.2010.02.042

    CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650. doi:10.1016/j.copbio.2009.09.014

    CAS  PubMed  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588. doi:10.1038/nbt960

    CAS  PubMed  Google Scholar 

  • Barazani O, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25:2397–2406. doi:10.1023/a:1020890311499

    CAS  Google Scholar 

  • Becerra-Castro C, Kidd PS, Rodríguez-Garrido B, Monterroso C, Santos-Ucha P, Prieto-Fernández Á (2013) Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environ Pollut 178:202–210. doi:10.1016/j.envpol.2013.03.027

    CAS  PubMed  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250. doi:10.1016/j.soilbio.2004.07.033

    CAS  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18. doi:10.1007/s00253-009-2092-7

    CAS  PubMed  Google Scholar 

  • Bergmeyer H.U., Gawenn K, M. G (eds) (1974) Methods in enzymatic analysis. Academic Press, New York. pp. 425–522

  • Beynon ER, Symons ZC, Jackson RG, Lorenz A, Rylott EL, Bruce NC (2009) The role of oxophytodienoate reductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. Plant Physiol 151:253–261. doi:10.1104/pp. 109.141598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blackwood CB, Hudleston D, Zak DR, Buyer JS (2007) Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Appl Environ Microbiol 73:5276–5283. doi:10.1128/aem.00514-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    CAS  PubMed  Google Scholar 

  • Brentner LB, Mukherji ST, Merchie KM, Yoon JM, Schnoor JL, Aken BV (2008) Expression of glutathione S-transferases in poplar trees (Populus trichocarpa) exposed to 2,4,6-trinitrotoluene (TNT). Chemosphere 73:657–662. doi:10.1016/j.chemosphere.2008.07.059

    CAS  PubMed  Google Scholar 

  • Brentner LB, Mukherji ST, Walsh SA, Schnoor JL (2010) Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography. Environ Pollut 158:470–475. doi:10.1016/j.envpol.2009.08.022

    CAS  PubMed  Google Scholar 

  • Caballero A, Ramos JL (2006) A double mutant of Pseudomonas putida JLR11 deficient in the synthesis of the nitro reductase PnrA and assimilatory nitrite reductase NasB is impaired for growth on 2,4,6-trinitrotoluene (TNT). Environ Microbiol 8:1306–1310. doi:10.1111/j.1462-2920.2006.01012.x

    CAS  PubMed  Google Scholar 

  • Chapman HD (1965) Cation-exchange capacity. In: CA Black (ed) Methods of soil analysis - Chemical and microbiological properties. Agronomy.

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res Int 12:34–48. doi:10.1065/espr2004.08.213

    CAS  PubMed  Google Scholar 

  • Chekol T, Vough LR, Chaney RL (2004) Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int 30:799–804. doi:10.1016/j.envint.2004.01.008

    CAS  PubMed  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263. doi:10.1007/s002480000087

    CAS  PubMed  Google Scholar 

  • Clausen J, Robb J, Curry D, Korte N (2004) A case study of contaminants on military ranges: camp Edwards, Massachusetts, USA. Environ Pollut 129:13–21. doi:10.1016/j.envpol.2003.10.002

    CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. doi:10.1016/j.soilbio.2009.11.024

    CAS  Google Scholar 

  • Cruz-Uribe O, Rorrer GL (2006) Uptake and biotransformation of 2,4,6-trinitrotoluene (TNT) by microplantlet suspension culture of the marine red macroalga Portieria hornemannii. Biotechnol Bioeng 93:401–412. doi:10.1002/bit.20712

    CAS  PubMed  Google Scholar 

  • Cunningham JE, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58:1451–1458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Das P, Datta R, Makris KC, Sarkar D (2010) Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ Pollut 158:1980–1983. doi:10.1016/j.envpol.2009.12.011

    CAS  PubMed  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101. doi:10.1093/jxb/32.1.93

    CAS  Google Scholar 

  • Dzantor EK (2007) Phytoremediation: the state of rhizosphere ‘engineering’ for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biotechnol 82:228–232. doi:10.1002/jctb.1662

    CAS  Google Scholar 

  • Esteve-Nuñez A, Lucchesi G, Philipp B, Schink B, Ramos JL (2000) Respiration of 2,4,6-Trinitrotoluene by Pseudomonassp. Strain JLR11. J Bacteriol 182:1352–1355. doi:10.1128/jb.182.5.1352-1355.2000

    PubMed Central  PubMed  Google Scholar 

  • Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352. doi:10.1128/mmbr.65.3.335-352.2001

    PubMed Central  PubMed  Google Scholar 

  • French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64:2864–2868. doi:10.1007/s002849900216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller ME, Manning JF Jr (1997) Aerobic gram-positive and gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6-trinitrotoluene (TNT). Curr Microbiol 35:77–83

    CAS  PubMed  Google Scholar 

  • García-Villada L, López-Rodas V, Bañares-España E, Flores-Moya A, Agrelo M, Martín-Otero L, Costas E (2002) Evolution of microalagai in highly stressing environments: an experimental model analyzing the rapid adaptation of Dictyosphaerium (chlorophyceae) from sensitivity to resistance against 2,4,6-trinitrotoluene by rare preselective mutations. J Phycol 38:1074–1081. doi:10.1046/j.1529-8817.2002.01128.x

    Google Scholar 

  • George I, Eyers L, Stenuit B, Agathos SN (2008) Effect of 2,4,6-trinitrotoluene on soil bacterial communities. J Ind Microbiol Biotechnol 35:225–236. doi:10.1007/s10295-007-0289-2

    CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7. doi:10.1016/j.femsle.2005.07.030

    CAS  PubMed  Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric & Hortic 12:185–193. doi:10.1080/01448765.1995.9754736

    Google Scholar 

  • Gong P, Wilke BM, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6-trinitrotoluene (TNT) to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157. doi:10.1007/s002449900455

    CAS  PubMed  Google Scholar 

  • Gonzalez-Perez MM, van Dillewijn P, Wittich RM, Ramos JL (2007) Escherichia coli has multiple enzymes that attack TNT and release nitrogen for growth. Environ Microbiol 9:1535–1540. doi:10.1111/j.1462-2920.2007.01272.x

    CAS  PubMed  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17. doi:10.1016/S0981-9428(00)01212-2

    CAS  Google Scholar 

  • Griess P (1879) Bemerkungen zu der abhandlung der H.H. Weselsky und Benedikt “Ueber einige azoverbindungen.”. Ber Dtsch Chem Ges 12:426–428

    Google Scholar 

  • Gunning V, Tzafestas K, Sparrow H, Johnston EJ, Brentnall AS, Potts JR, Rylott EL, Bruce NC (2014) Arabidopsis glutathione transferases U24 and U25 exhibit a range of detoxification activities with the environmental pollutant and explosive, 2,4,6-trinitrotoluene. Plant Physiol 165:854–865. doi:10.1104/pp. 114.237180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurska J, Wang W, Gerhardt K, E., Khalid A, M., Isherwood D, M., Huang X-D, Glick B, R., Greenberg B, M. (2009) Three Year Field Test of a Plant Growth Promoting Rhizobacteria Enhanced Phytoremediation System at a Land Farm for Treatment of Hydrocarbon Waste. Environ Sci Technol 43. doi: 10.1021/es801540h.

  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405. doi:10.1016/s0076-6879(81)77053-8

    CAS  PubMed  Google Scholar 

  • Haidour A, Ramos JL (1996) Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene by Pseudomonas sp. Environ Sci Technol 30:2365–2370. doi:10.1021/es950824u

    CAS  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitro reductase. Nat Biotechnol 19:1168–1172. doi:10.1038/nbt1201-1168

    CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular 347, California agricultural experiment station. University of California, Berkely

    Google Scholar 

  • Honeycutt ME, Jarvis AS, McFarland VA (1996) Cytotoxicity and mutagenicity of 2,4,6-trinitrotoluene and its metabolites. Ecotoxicol Environ Saf 35:282–287. doi:10.1006/eesa.1996.0112

    CAS  PubMed  Google Scholar 

  • Hundal LS, Shea PJ, Comfort SD, Powers WL, Singh J (1997) Long-term TNT sorption and bound residue formation in soil. J Environ Qual 26:896–904. doi:10.2134/jeq1997.00472425002600030042x

    CAS  Google Scholar 

  • Jha PN, Kumar A (2007) Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. J Appl Microbiol 103:1311–1320. doi:10.1111/j.1365-2672.2007.03383.x

    CAS  PubMed  Google Scholar 

  • Keith LH, Telliard WA (1979) Priority pollutants I. A perspective view. Environ Sci Technol 13.

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236. doi:10.1146/annurev.micro.56.012302.161120

    CAS  PubMed  Google Scholar 

  • Kidd PS, Prieto-Fernandez A, Monterroso C, Acea MJ (2008) Rhizosphere microbial community and hexachlorocyclohexane degradative potential in contrasting plant species. Plant Soil 302:233–247. doi:10.1007/s11104-007-9475-2

    CAS  Google Scholar 

  • Kilian PH, Skrzypek S, Becker N, Havemann K (2001) Exposure to armament wastes and leukemia: a case–control study within a cluster of AML and CML in Germany. Leukemia Res 25:839–845. doi:10.1016/s0145-2126(01)00035-2

    CAS  Google Scholar 

  • Kloepper J, Leong J, Teintze M, Schroth M (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320. doi:10.1007/bf02602840

    CAS  Google Scholar 

  • Kuiper I, Kravchenko LV, Bloemberg GV, Lugtenberg BJJ (2002) Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components. Mol Plant-Microbe Interact 15:734–741. doi:10.1094/mpmi.2002.15.7.734

    CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15. doi:10.1007/s11356-009-0240-3

    CAS  PubMed  Google Scholar 

  • Lagendijk EL, Validov S, Lamers GE, de Weert S, Bloemberg GV (2010) Genetic tools for tagging Gram-negative bacteria with mCherry for visualization in vitro and in natural habitats, biofilm and pathogenicity studies. FEMS Microbiol Lett 305:81–90. doi:10.1111/j.1574-6968.2010.01916.x

    CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2007) Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128. doi:10.1093/bioinformatics/btl529

    CAS  PubMed  Google Scholar 

  • Leung KH, Yao M, Stearns R, Chiu SHL (1995) Mechanism of bioactivation and covalent binding of 2,4,6-Trinitrotoluene. Chem-Biol Interact 97:37–51. doi:10.1016/0009-2797(94)03606-9

    CAS  PubMed  Google Scholar 

  • Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manage 70:291–307. doi:10.1016/j.jenvman.2003.12.005

    PubMed  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J, Hector A, Hooper D, Huston M, Raffaelli D, Schmid B (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    CAS  PubMed  Google Scholar 

  • Lorenz A, Rylott EL, Strand SE, Bruce NC (2013) Towards engineering degradation of the explosive pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine in the rhizosphere. FEMS Microbiol Lett 340:49–54. doi:10.1111/1574-6968.12072

    CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13. doi:10.1046/j.1462-2920.1999.00005.x

    CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918

    CAS  PubMed  Google Scholar 

  • Makris KC, Sarkar D, Datta R (2010) Coupling indigenous biostimulation and phytoremediation for the restoration of 2,4,6-trinitrotoluene-contaminated sites. J Environ Monit 12:399–403. doi:10.1039/b908162c

    CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishino SF, Spain JC, Lenke H, Knackmuss HJ (1999) Mineralization of 2,4- and 2,6-dinitrotoluene in soil slurries. Environ Sci Technol 33:1060–1064. doi:10.1021/es9808301

    CAS  Google Scholar 

  • Nishino SF, Paoli GC, Spain JC (2000) Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol 66:2139–2147. doi:10.1128/AEM.66.5.2139-2147.2000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801. doi:10.1128/aem.68.8.3795-3801.2002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pennington JC, Brannon JM, Gunnison D, Harrelson DW, Zakikhani M, Miyares P, Jenkins TF, Clarke J, Hayes C, Ringleberg D, Perkins E, Fredrickson H (2001) Monitored natural attenuation of explosives. Soil Sediment Contam Int J 10:45–70. doi:10.1080/20015891109185

    CAS  Google Scholar 

  • Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci 359:907–918. doi:10.1098/rstb.2003.1384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramos JL, Delgado A, Duque E, Fandila M-D, Gil M, Haïdour A, Lucchesi G, Michán C, Salto R (1996) Biodegradation of nitroaromatics by microbes. In: Sheehan D (ed) Methods in biotechnology. Humana Press Inc, Totowa

    Google Scholar 

  • Ramos JL, Gonzalez-Perez MM, Caballero A, van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281. doi:10.1016/j.copbio.2005.03.010

    CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Claeyssens M, Van Montagu M (1993) Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J Bacteriol 175: 7056–7065

  • Remans T, Thijs S, Truyens S, Weyens N, Schellingen K, Keunen E, Gielen H, Cuypers A, Vangronsveld J (2012) Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth. Ann Bot 110:239–252. doi:10.1093/aob/mcs105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robertson BK, Jjemba PK (2005) Enhanced bioavailability of sorbed 2,4,6-trinitrotoluene (TNT) by a bacterial consortium. Chemosphere 58:263–270. doi:10.1016/j.chemosphere.2004.08.080

    CAS  PubMed  Google Scholar 

  • Romick F (1998) Acetoin production as an indicator of growth and metabolic inhibition of Listeria monocytogenes. J Appl Microbiol 84:18–24. doi:10.1046/j.1365-2672.1997.00302.x

    CAS  PubMed  Google Scholar 

  • Rylott EL, Budarina MV, Barker A, Lorenz A, Strand SE, Bruce NC (2011a) Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT. New Phytol 192:405–413. doi:10.1111/j.1469-8137.2011.03807.x

    CAS  PubMed  Google Scholar 

  • Rylott EL, Lorenz A, Bruce NC (2011b) Biodegradation and biotransformation of explosives. Curr Opin Biotechnol 22:434–440. doi:10.1016/j.copbio.2010.10.014

    CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. doi:10.1016/0003-2697(87)90612-9

    CAS  PubMed  Google Scholar 

  • Schlegel HG, Cosson JP, Baker AJM (1991) Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria. Multilingue 194: 18-25. doi:10.1111/j.1438-8677.1991.tb00189.x

  • Sessitsch A, Hardoim P, Doring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36. doi:10.1094/MPMI

    CAS  PubMed  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal 27: 379–423 and 623–656.

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475. doi:10.1128/AEM.67.6.2469-2475.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sipilä T, Keskinen A-K, Akerman M-L, Fortelius C, Haahtela K, Yrjälä K (2008) High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. The ISME J 2:968–981. doi:10.1038/ismej.2008.50

    Google Scholar 

  • Smith B, Wilson JB (1996) A consumer’s guide to evenness indices. Oikos 79:70–82

    Google Scholar 

  • Snellinx Z, Nepovim A, Taghavi S, Vangronsveld J, Vanek T, van der Lelie D (2002) Biological remediation of explosives and related nitro aromatic compounds. Environ Sci Pollut Res 9:48–61. doi:10.1065/espr2001.08.01

    CAS  Google Scholar 

  • Snellinx Z, Taghavi S, Vangronsveld J, van der Lelie D (2003) Microbial consortia that degrade 2,4-DNT by interspecies metabolism: isolation and characterisation. Biodegradation 14:19–29. doi:10.1023/A:1023539104747

    CAS  PubMed  Google Scholar 

  • Spanggord RJ, Spain JC, Nishino SF, Mortelmans KE (1991) Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl Environ Microbiol 57:3200–3205. doi:10.1016/j.jhazmat.2011.05.061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spiegel K, Headley JV, Peru KM, Haidar N, Gurprasard NP (2005) Residues of explosives in groundwater leached from soils at a military site in Eastern Germany. Commun Soil Sci Plant Anal 36:133–153. doi:10.1081/css-200043010

    CAS  Google Scholar 

  • Stenuit BA, Agathos SN (2010) Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio) chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol 88:1043–1064. doi:10.1007/s00253-010-2830-x

    CAS  PubMed  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757. doi:10.1128/aem.02239-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Travis ER, Bruce NC, Rosser SJ (2008) Short term exposure to elevated trinitrotoluene concentrations induced structural and functional changes in the soil bacterial community. Environ Pollut 153:432–439. doi:10.1016/j.envpol.2007.08.006

    CAS  PubMed  Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, an octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp associated with poplar tissues (Populus deltoides x nigra DN34). Appl Environ Microbiol 70:508–517. doi:10.1128/aem.70.1.508-517.2004

    PubMed Central  PubMed  Google Scholar 

  • Van Dillewijn P (2008) What gets turned on in the rhizosphere? Microb Biotechnol 1:341–342. doi:10.1111/j.1751-7915.2008.00054.x

    PubMed Central  PubMed  Google Scholar 

  • Van Dillewijn P, Caballero A, Paz J, Gonzalez-Perez MM, Olivia J, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 15(41):1378–1383. doi:10.1021/es062165z

    Google Scholar 

  • van Dillewijn P, Couselo JL, Corredoira E, Delgado A, Wittich R-M, Ballester A, Ramos JL (2008a) Bioremediation of 2,4,6-trinitrotoluene by bacterial Nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410. doi:10.1021/es801231w

    PubMed  Google Scholar 

  • van Dillewijn P, Wittich RM, Caballero A, Ramos JL (2008b) Subfunctionality of hydride transferases of the old yellow enzyme family of flavoproteins of Pseudomonas putida. Appl Environ Microbiol 74:6703–6708. doi:10.1128/AEM.00386-08

    PubMed Central  PubMed  Google Scholar 

  • van Dillewijn P, Wittich RM, Caballero A, Ramos JL (2008c) Type II hydride transferases from different microorganisms yield nitrite and diarylamines from polynitroaromatic compounds. Appl Environ Microbiol 74:6820–6823. doi:10.1128/AEM.00388-08

    PubMed Central  PubMed  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    CAS  Google Scholar 

  • Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T, Carleer R, Vangronsveld J (2009a) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapotranspiration of TCE. Environ Sci Pollut Res 16:830–843. doi:10.1007/s11356-009-0154-0

    CAS  Google Scholar 

  • Weyens N, Van Der Lelie D, Artois T, Smeets K, Taghavi S, Newman L, Carleer R, Vangronsveld J (2009b) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418. doi:10.1021/es901997z

    CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009c) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598. doi:10.1016/j.tibtech.2009.07.006

    CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009d) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254. doi:10.1016/j.copbio.2009.02.012

    CAS  PubMed  Google Scholar 

  • Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70:3566–3574. doi:10.1128/aem.70.6.3566-3574.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittich R-M, Haïdour A, Van Dillewijn P, Ramos J-L (2008) OYE flavoprotein reductases initiate the condensation of TNT-derived intermediates to secondary diarylamines and nitrite. Environ Sci Technol 42:734–739. doi:10.1021/es071449w

    CAS  PubMed  Google Scholar 

  • Zhang HM, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409. doi:10.1126/science.279.5349.407

    CAS  PubMed  Google Scholar 

  • Zhu B, Peng R-H, Fu X-Y, Jin X-F, Zhao W, Xu J, Han H-J, Gao J-J, Xu Z-S, Bian L, Yao Q-H (2012) Enhanced Transformation of TNT by Arabidopsis Plants Expressing an Old Yellow Enzyme. PLoS ONE 7: e39861. doi:10.1371/journal.pone.0039861

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413. doi:10.1016/j.envint.2006.12.005

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from FWO-Flanders, Belgium, the Methusalem project 08M03VGRJ and partially by grant BIO2010-17227 of the Spanish Ministry of Competitiveness and FEDER. We thank Col Peter Philipsen, Cdt Herman Van Broeck and ADM Daniel Proot from the Belgian Defence for providing the TNT-sampling site. We thank Jenny Put for her technical help with the measurements of the HPLC-samples and dr. Regina-Michaela Wittich for her assistance with the ion-pair HPLC analysis. Moreover, we thank prof. dr. Tom Artois for the use of the fluorescence microscope, Rik Paesen for his help with the confocal microscope, prof. dr. Guido Bloemberg for providing the egfp and mCherry-plasmids and dr. Jonathan Van Hamme for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofie Thijs.

Additional information

Responsible Editor: Hans Lambers..

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4960 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thijs, S., Van Dillewijn, P., Sillen, W. et al. Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant Soil 385, 15–36 (2014). https://doi.org/10.1007/s11104-014-2260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2260-0

Keywords

Navigation