Brought to you by:

Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells

, , , and

Published 30 June 2009 2009 IOP Publishing Ltd
, , Citation Björn Carlberg et al 2009 Biomed. Mater. 4 045004 DOI 10.1088/1748-6041/4/4/045004

1748-605X/4/4/045004

Abstract

Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Hence, tissue engineering scaffolds intended for CNS repair and rehabilitation have been subject to intense research effort. Electrospun porous scaffolds, mimicking the natural three-dimensional environment of the in vivo extracellular matrix (ECM) and providing physical support, have been identified as promising candidates for CNS tissue engineering. The present study demonstrates in vitro culturing and neuronal differentiation of human embryonic stem cells (hESCs) on electrospun fibrous polyurethane scaffolds. Electrospun scaffolds composed of biocompatible polyurethane resin (Desmopan 9370A, Bayer MaterialScience AG) were prepared with a vertical electrospinning setup. Resulting scaffolds, with a thickness of approximately 150 µm, exhibited high porosity (84%) and a bimodal pore size distribution with peaks at 5–6 and 1 µm. The mean fiber diameter was measured to approximately 360 nm with a standard deviation of 80 nm. The undifferentiated hESC line SA002 (Cellartis AB, Göteborg, Sweden) was seeded and cultured on the produced scaffolds and allowed propagation and then differentiation for up to 47 days. Cultivation of hESC on electrospun fibrous scaffolds proved successful and neuronal differentiation was observed via standard immunocytochemistry. The results indicate that predominantly dopaminergic tyrosine hydroxylase (TH) positive neurons are derived in co-culture with fibrous scaffolds, in comparison to reference cultures under the same differentiation conditions displaying large proportions of GFAP positive cell types. Scanning electron micrographs confirm neurite outgrowth and connection to adjacent cells, as well as cell attachment to individual fibers of the fibrous scaffold. Consequently, electrospun polyurethane scaffolds have been proven feasible as a substrate for hESC propagation and neuronal differentiation. The physical interaction between cells and the fibrous scaffold indicates that these scaffolds provide a three-dimensional physical structure; a potential candidate for neural tissue engineering repair and rehabilitation.

Export citation and abstract BibTeX RIS

Please wait… references are loading.