skip to main content
research-article

An edge-based computationally efficient formulation of Saint Venant-Kirchhoff tetrahedral finite elements

Published:09 February 2009Publication History
Skip Abstract Section

Abstract

This article describes a computationally efficient formulation and an algorithm for tetrahedral finite-element simulation of elastic objects subject to Saint Venant-Kirchhoff (StVK) material law. The number of floating point operations required by the algorithm is in the range of 15% to 27% for computing the vertex forces from a given set of vertex positions, and 27% to 38% for the tangent stiffness matrix, in comparison to a well-optimized algorithm directly derived from the conventional Total Lagrangian formulation. In the new algorithm, the data is associated with edges and tetrahedron-sharing edge-pairs (TSEPs), as opposed to tetrahedra, to avoid redundant computation. Another characteristic of the presented formulation is that it reduces to that of a spring-network model by simply ignoring all the TSEPs. The technique is demonstrated through an interactive application involving haptic interaction, being combined with a linearized implicit integration technique employing a preconditioned conjugate gradient method.

References

  1. Baraff, D. and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of ACM SIGGRAPH'98 Confereence, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barbič, J. and James, D. L. 2005. Real-Time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3, 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bathe, K.-J. 1996. Finite Element Procedures. Prentice Hall.Google ScholarGoogle Scholar
  4. Bolz, J., Farmer, I., Grinspun, E., and Schröder, P. 2003. Sparse matrix solvers on the GPU: Conjugate gradients and multigrid. ACM Trans. Graph. 22, 3, 917--924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bro-Nielsen, M. and Cotin, S. 1996. Real-Time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum. 15, 3, 57--66.Google ScholarGoogle ScholarCross RefCross Ref
  6. Brouwer, I., Mora, V., and Laroche, D. 2007. A viscoelastic soft tissue model for haptic surgical simulation. In Proceedings of the 2nd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 593--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002a. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 3, 586--593. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002b. A multiresolution framework for dynamic deformations. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 41--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Coutinho, A. L. G. A., Martins, M. A. D., Alves, J. L. D., Landau, L., and Moraes, A. 2001. Edge-Based finite element techniques for non-linear solid mechanics problems. Int. J. Numer. Methods Eng. 50, 2053--2068.Google ScholarGoogle ScholarCross RefCross Ref
  10. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H. 2001. Dynamic real-time deformations using space and time adaptive sampling. In Proceedings of the ACM SIGGRAPH'01 Conference, 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Delingette, H. 2008. Triangular springs for modeling nonlinear membranes. IEEE Trans. Visualiz. Comput. Graph. 14, 2, 329--341. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Doll, S. and Schweizerhof, K. 2000. On the development of volumetric strain energy functions. Trans. ASME: J. Appl. Mechanics 67, 1, 17--21.Google ScholarGoogle ScholarCross RefCross Ref
  13. Duysak, A. and Zhang, J. J. 2004. Fast simulation of deformable objects. In Proceedings of the 8th International Conference on Information Visualisation, 422--427. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gibson, S. F. F. and Mirtich, B. 1997. A survey of deformable modeling in computer graphics. Tech. rep. TR 1997-19, Mitsubishi Electric Research Laboratory.Google ScholarGoogle Scholar
  15. Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A discrete model for inelastic deformation of thin shells. Tech. rep., Courant Institute of Mathematical Sciences, New York University. http://www.mrl.nyu.edu/~ajsecord/fracture/.Google ScholarGoogle Scholar
  16. Gumhold, S., Guthe, S., and Strasser, W. 1999. Tetrahedral mesh compression with the cut-border machines. In Proceedings of the IEEE Visualization'99, 501--509. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Higham, N. J. and Schreiber, R. S. 1990. Fast polar decomposition of an arbitrary matrix. SIAM J. Sci. Statis. Comput. 11, 4, 648--655. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hirota, K. and Kaneko, T. 2001. Haptic representation of elastic objects. Presence 10, 5, 525--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26, 3, 13:1--13:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Irving, G., Teran, J., and Fedkiw, R. 2006. Tetrahedral and hexahedral invertible finite elements. Graphical Models 68, 2, 66--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. James, D. L. and Pai, D. K. 1999. ArtDefo: accurate real time deformable objects. In Proceedings of the ACM SIGGRAPH'99 Conference, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lloyd, B. A., Székely, G., and Harders, M. 2007. Identification of spring parameters for deformable object simulation. IEEE Trans. Visualiz. Comput. Graph. 13, 5, 1081--1094. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Löhner, R. 1994. Edges, stars, superedges and chains. Comput. Methods Appl. Mechanics Eng. 111, 255--263.Google ScholarGoogle ScholarCross RefCross Ref
  24. Martins, M. A. D., Coutinho, A. L. G. A., and Alves, J. L. D. 1997. Parallel iterative solution of finite element systems of equations employing edge-based data structures. In Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Computing.Google ScholarGoogle Scholar
  25. Mendoza, C. and Laugier, C. 2003. Tissue cutting using finite elements and force feedback. In Proceedings of the International Symposium in Surgery Simulation and Soft Tissue Modeling. Lecture Notes in Computer Science, vol. 2673. Springer, 175--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Miller, K., Joldes, G., Lance, D., and Wittek, A. 2007. Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods Eng. 23, 121--134.Google ScholarGoogle ScholarCross RefCross Ref
  27. Müller, M., Dorsey, J., McMillan, L., and Jagnow, R. 2001. Real-time simulation of deformation and fracture of stiff materials. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation, 113--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Müller, M. and Gross, M. 2004. Interactive virtual materials. In Proceedings of Graphics Interface, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nakao, M., Kuroda, T., Oyama, H., Sakaguchi, G., and Komeda, M. 2006. Physics-Based simulation of surgical fields for preoperative strategic planning. J. Medical Syst. 30, 5, 371--380. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Comput. Graphics Forum 25, 4, 809--836.Google ScholarGoogle ScholarCross RefCross Ref
  32. O'Brien, J. F. and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the ACM SIGGRAPH'99 Conference, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Picinbono, G., Delingette, H., and Ayache, N. 2003. Non-Linear anisotropic elasticity for real-time surgery simulation. Graphical Models 65, 5, 305--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Simo, J. C. and Taylor, R. L. 1991. Quasi-Incompressible finite elasticity in principal stretches: Continuum basis and numerical algorithms. Comput. Methods Appl. Mechanics Eng. 85, 273--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Teran, J., Blemker, S., Ng Thow Hing, V., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 68--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Teran, J., Sifakis, E., Ng Thow Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE Trans. Visualiz. Comput. Graph. 11, 3, 317--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of the ACM SIGGRAPH'87 Conference, 21, 4, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Teschner, M., Heidelberger, B., Müller, M., and Gross, M. 2004. A versatile and robust model for geometrically complex deformable solids. In Proceedings of the Computer Graphics International Conference, 312--319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Van Gelder, A. 1998. Approximate simulation of elastic membranes by triangulated spring meshes. J. Graph. Tools 3, 2, 21--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Weiss, J. A., Maker, B. N., and Govindjee, S. 1996. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mechanics Eng. 135, 1, 107--128.Google ScholarGoogle ScholarCross RefCross Ref
  42. Zhong, H., Wachowiak, M. P., and Peters, T. M. 2005. A real time finite element based tissue simulation method incorporating nonlinear elastic behavior. Comput. Methods Biomechanics Biomedical Eng. 8, 3, 177--189.Google ScholarGoogle ScholarCross RefCross Ref
  43. Zhuang, Y. and Canny, J. 2000. Haptic interaction with global deformations. In Proceedings of the IEEE International Conference on Robotics and Automation, 2428--2433.Google ScholarGoogle Scholar

Index Terms

  1. An edge-based computationally efficient formulation of Saint Venant-Kirchhoff tetrahedral finite elements

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 28, Issue 1
          January 2009
          144 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1477926
          Issue’s Table of Contents

          Copyright © 2009 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 9 February 2009
          • Accepted: 1 October 2008
          • Received: 1 June 2008
          Published in tog Volume 28, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader