skip to main content
10.1145/1073368.1073394acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
Article

Robust quasistatic finite elements and flesh simulation

Published:29 July 2005Publication History

ABSTRACT

Quasistatic and implicit time integration schemes are typically employed to alleviate the stringent time step restrictions imposed by their explicit counterparts. However, both quasistatic and implicit methods are subject to hidden time step restrictions associated with both the prevention of element inversion and the effects of discontinuous contact forces. Furthermore, although fast iterative solvers typically require a symmetric positive definite global stiffness matrix, a number of factors can lead to indefiniteness such as large jumps in boundary conditions, heavy compression, etc. We present a novel quasistatic algorithm that alleviates geometric and material indefiniteness allowing one to use fast conjugate gradient solvers during Newton-Raphson iteration. Additionally, we robustly compute smooth elastic forces in the presence of highly deformed, inverted elements alleviating artificial time step restrictions typically required to prevent such states. Finally, we propose a novel strategy for treating both collision and self-collision in this context.

References

  1. {ACP02} Allen B., Curless B., Popovic Z.: Articulated body deformation from range scan data. In Proc. of ACM SIGGRAPH 2002 (2002), pp. 612--619. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. {AHS03} Albrecht I., Haber J., Seidel H. P.: Construction and animation of anatomically based human hand models. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. (2003), pp. 98--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. {AS96} Ambrosio L., Soner H. M.: Level set approach to mean curvature flow in arbitrary codimension. J. of Differential Geometry 43 (1996), 693--737.Google ScholarGoogle ScholarCross RefCross Ref
  4. {BFA02} Bridson R., Fedkiw R., Anderson J.: Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002), 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {BMF03} Bridson R., Marino S., Fedkiw R.: Simulation of clothing with folds and wrinkles. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. (2003), pp. 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. {BW98} Baraff D., Witkin A.: Large steps in cloth simulation. In Proc. SIGGRAPH 98 (1998), pp. 1---12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. {BWK03} Baraff D., Witkin A., Kass M.: Untangling cloth. ACM Trans. Graph. (SIGGRAPH Proc.) 22 (2003), 862--870. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. {CGC*02a} Capell S., Green S., Curless B., Duchamp T., Popovićz.: Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002), 586--593. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {CGC*02b} Capell S., Green S., Curless B., Duchamp T., Popovićz.: A multiresolution framework for dynamic deformations. In ACM SIGGRAPH Symp. on Comput. Anim. (2002), ACM Press, pp. 41--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. {CK02} Choi K.-J. Ko H.-S.: Stable but responsive cloth. ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002). 604--611. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. {CK05} Choi M. G., Ko H.-S.: Modal warping: Realtime simulation of large rotational deformation and manipulation. IEEE Trans. Viz. Comput. Graph. 11 (2005), 91--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {CZ92} Chen D., Zeltzer D.: Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method. Comput. Graph. (SIGGRAPH Proc.) (1992), 89--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. {DCKY02} Dong F., Clapworthy G., Krokos M., Yao J.: An anatomy-based approach to human muscle modeling and deformation. IEEE Trans. Vis. Comput. Graph. 8, 2 (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. {DDCB01} Debunne G., Desbrun M., Cani M., Barr A.: Dynamic real-time deformations using space & time adaptive sampling. In Proc. SIGGRAPH 2001 (2001), vol. 20, pp. 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {FL01} Fisher S., Lin M. C.: Deformed distance fields for simulation of non-penetrating flexible bodies. In Comput. Anim. and Sim. '01 (2001), Proc. Eurographics Work-shop, pp. 99--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. {GBF03} Guendelman E., Bridson R., Fedkiw R.: Nonconvex rigid bodies with stacking. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3 (2003). 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. {GHDS03} Grinspun E., Hirani A., Desbrun M., Schröder P.: Discrete shells. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. (2003), pp. 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. {GKS02} Grinspun E., Krysl P., Schröder P.: Charms: A simple framework for adaptive simulation. ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002), 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. {GMTT89} Gourret J.-P., Magnenat-Thalmann N., Thalmann D.: Simulation of object and human skin deformations in a grasping task. Comput. Graph. (SIGGRAPH Proc.) (1989), 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {GMW81} Gill P. E., Murray W., Wright M. H.: Practical Optimization. Academic Press, San Diego, USA, 1981.Google ScholarGoogle Scholar
  21. {GW03} Guilkey J., Weiss J.: Implicit time integration for the material point method: Quantitative and algorithmics comparison with the finite element method. Int. J. Numer, Meth. Engng 57 (2003), 1323--1338.Google ScholarGoogle ScholarCross RefCross Ref
  22. {HFS*01} Hirota G., Fisher S., State A., Lee C., Fuchs H.: An implicit finite element method for elastic solids in contact. In Proc. of Computer Animation (2001), pp. 136--146.Google ScholarGoogle ScholarCross RefCross Ref
  23. {ITF04} Irving G., Teran J., Fedkiw R.: Invertible finite elements for robust simulation of large deformation. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. (2004), pp. 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. {JF03} James D., Fatahalian K.: Precomputing interactive dynamic deformable scenes. ACM Trans. Graph. (SIGGRAPH Proc.) 22 (2003). 879--887. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. {JP02} James D., Pai D.: DyRT: Dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002). 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. {KJP02} Kry P. G., James D. L., Pai D. K.: Eigenskin: real time large deformation character skinning in hardware. In Proceedings of the ACM SIGGRAPH symposium on Computer animation (2002), ACM Press, pp. 153--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. {KM04} Kurihara T., Miyata N.: Modeling deformable human hands from medical images. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. (2004), pp. 365--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. {KMGB04} Kautzman R., Maiolo A., Griffin D., Bueker A.: Jiggly bits and motion retargetting: Bringing the motion of Hyde to life in Van Helsing with dynamics. In SIGGRAPH 2004 Sketches & Applications (2004), ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. {LCF00} Lewis J., Cordner M., Fong N.: Pose space deformations: A unified approach to shape interpolation a nd skeleton-driven deformation. Comput. Graph. (SIGGRAPH Proc.) (2000), 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. {MAC04} Marchal D., Aubert F., Chaillou C.: Collision between deformable objects using fast-marching on tetrahedral models. In Proceedings of the ACM SIGGRAPH symposium on Computer animation (2004), ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. {MBF04} Molino N., Bao Z., Fedkiw R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. (SIGGRAPH Proc.) 23 (2004), 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. {MBTF03} Molino N., Bridson R., Teran J., Fedkiw R.: A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In 12th Int. Meshing Roundtable (2003), pp. 103--114.Google ScholarGoogle Scholar
  33. {MDM*02} Müller M., Dorsey J., McMillan L., Jagnow R., Cutler B.: Stable real-time deformations. In ACM SIGGRAPH Symp. on Comput. Anim. (2002), pp. 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. {MG03} Mohr A., Gleicher M.: Building efficient, accurate character skins from examples. ACM Transactions on Graphics 22, 3 (2003), 562--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. {MG04} Müller M., Gross M.: Interactive virtual materials. In Graph. Interface (May 2004). pp. 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. {MKN*04} Müller M., Keiser R., Nealen A., Pauly M., Gross M., Alexa M.: Point based animation of elastic, plastic and melting objects. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. (2004), pp. 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. {MMDJ01} Müller M., McMilan L., Dorsey J., Jagnow R.: Real-time simulation of deformation and fracture of stiff materials. In Comput. Anim. and Sim. '01 (2001), Proc. Eurographics Workshop, Eurographics Assoc., pp. 99--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. {NTHF02} Ng-Thow-Hing V., Fiume E.: Application-specific muscle representations. In Proc. of Gr. Inter, 2002 (2002), Sturzlinger W., McCool M., (Eds.), Canadian Information Processing Society, pp. 107--115.Google ScholarGoogle Scholar
  39. {OBH02} O'Brien J., Bargteil A., Hodgins J.: Graphical modeling of ductile fracture. ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002), 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. {OF02} Osher S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, 2002. New York, NY.Google ScholarGoogle Scholar
  41. {OH99} O'Brien J., Hodgins J.: Graphical modeling and animation of brittle fracture. In Proc. SIGGRAPH 99 (1999), vol. 18, pp. 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. {PDA01} Picinbono G., Delingette H., Ayache N.: Non-linear and anisotropic elastic soft tissue models for medical simulation. In IEEE Int. Conf. Robot. and Automation (2001).Google ScholarGoogle Scholar
  43. {SNF05} Sifakis E., Neverov I., Fedkiw R.: Automatic determination of facial muscle activations from sparse motion capture marker data. to appear in ACM Trans. Graph. (SIGGRAPH Proc.) (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. {SPCM97} Scheepers F., Parent R., Carlson W., MAY S.: Anatomy-based modeling of the human musculature. Comput. Graph. (SIGGRAPH Proc.) (1997), 163--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. {SRC01} Sloan P., Rose C., Cohen M.: Shape by example. In Proc. of 2001 Symp. Int. 3D Graph. (2001), pp. 135--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. {ST04} Stinson W., Thuriot P.: Bulging muscle and sliding skin: Deformation systems for Hellboy. In SIGGRAPH 2004 Sketches & Applications (2004), ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. {TBNF03} Teran J., Blemker S., Ng V., Fedkiw R.: Finite volume methods for the simulation of skeletal muscle. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. (2003), pp. 68--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. {TF88a} Terzopoulos D., Fleischer K.: Deformable models. The Visual Computer, 4 (1988), 306--331.Google ScholarGoogle ScholarCross RefCross Ref
  49. {TF88b} Terzopoulos D., Fleischer K.: Modeling inelastic deformation: viscoelasticity, plasticity, fracture. Comput. Graph. (SIGGRAPH Proc.) (1988). 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. {THMG04} Teschner M., Heidelberger B., Müller M., Gross M.: A versatile and robust model for geometrically complex deformable solids. In Proc. Computer Graphics International (2004), pp. 312--319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. {TPBF87} Terzopoulos D., Platt J., Barr A., Fleischer K.: Elastically deformable models. Comput. Graph. (Proc. SIGGRAPH 87) 21, 4 (1987), 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. {TSSB*05} Teran J., Sifakis E., Salinas-Blemker S., Ng-Thow-Hing V., Lau C., Fedkiw R.: Creating and simulating skeletal muscle from the visible human data set. IEEE Trans. on Vis. and Comput. Graph. 11, 3 (2005), 317--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. {TW88} Terzopoulos D., Witkin A.: Physically based models with rigid and deformable components. In Graphics Interface (1988), pp. 146--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. {TWS80} Taylor R., Wilson E., Sacket S.: Direct solution of equations by frontal and variable band active column methods. In Europe-U.S. Workshop: Nonlinear Finite Element Analysis in Structural Mechanics (1980), Springer-Verlag.Google ScholarGoogle Scholar
  55. {VT00} Volino P., Thalman N.: Implementing fast cloth simulation with collision response. In Proceedings of the International Conference on Computer Graphics (2000), IEEE Computer Society, p. 257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. {WP02} Wang X. C., Phillips C.: Multi-weight enveloping: Least-squares approximation techniques for skin animation. In Proc. ACM SIGGRAPH Symposium on Computer Animation (2002), pp. 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. {WV97} Wilhelms J., Van Gelder A.: Anatomically based modeling. Comput. Graph. (SIGGRAPH Proc.) (1997), 173--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. {ZCK98} Zhu Q., Chen Y., Kaufman A.: Real-time biomechanically-based muscle volume deformation using FEM. Comput. Graph. Forum 190, 3 (1998), 275--284.Google ScholarGoogle Scholar

Index Terms

  1. Robust quasistatic finite elements and flesh simulation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation
            July 2005
            366 pages
            ISBN:1595931988
            DOI:10.1145/1073368

            Copyright © 2005 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 29 July 2005

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            Overall Acceptance Rate183of487submissions,38%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader