skip to main content
10.1145/1807167.1807176acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Leveraging spatio-temporal redundancy for RFID data cleansing

Published:06 June 2010Publication History

ABSTRACT

Radio Frequency Identification (RFID) technologies are used in many applications for data collection. However, raw RFID readings are usually of low quality and may contain many anomalies. An ideal solution for RFID data cleansing should address the following issues. First, in many applications, duplicate readings (by multiple readers simultaneously or by a single reader over a period of time) of the same object are very common. The solution should take advantage of the resulting data redundancy for data cleaning. Second, prior knowledge about the readers and the environment (e.g., prior data distribution, false negative rates of readers) may help improve data quality and remove data anomalies, and a desired solution must be able to quantify the degree of uncertainty based on such knowledge. Third, the solution should take advantage of given constraints in target applications (e.g., the number of objects in a same location cannot exceed a given value) to elevate the accuracy of data cleansing. There are a number of existing RFID data cleansing techniques. However, none of them support all the aforementioned features. In this paper we propose a Bayesian inference based approach for cleaning RFID raw data. Our approach takes full advantage of data redundancy. To capture the likelihood, we design an n-state detection model and formally prove that the 3-state model can maximize the system performance. Moreover, in order to sample from the posterior, we devise a Metropolis-Hastings sampler with Constraints (MH-C), which incorporates constraint management to clean RFID raw data with high efficiency and accuracy. We validate our solution with a common RFID application and demonstrate the advantages of our approach through extensive simulations.

References

  1. P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. Nabar, T. Sugihara, and J. Widom. Trio: A System for Data, Uncertainty, and Lineage. In VLDB, pages 1151--1154, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An Introduction to MCMC for Machine Learning. Machine Learning, 50(1-2):5--43, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  3. P. Andritsos, A. Fuxman, and R. J. Miller. Clean Answers over Dirty Databases: A Probabilistic Approach. In ICDE, page 30, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. L. Antova, C. Koch, and D. Olteanu. Query Language Support for Incomplete Information in the MayBMS System. In VLDB, pages 1422--1425, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. S. Chawathe, V. Krishnamurthy, S. Ramachandran, and S. E. Sarma. Managing RFID Data. In VLDB, pages 1189--1195, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A Database System for Managing Constantly-evolving Data. In VLDB, pages 1271--1274, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. N. Dalvi and D. Suciu. Efficient Query Evaluation on Probabilistic Databases. The VLDB Journal, 16(4):523--544, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic models for data management in acquisitional environments. In CIDR, pages 317--328, 2005.Google ScholarGoogle Scholar
  9. D. W. Engels and S. E. Sarma. The Reader Collision Problem. In IEEE SMC, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  10. C. Floerkemeier and M. Lampe. Issues with RFID Usage in Ubiquitous Computing Applications. In Pervasive, pages 188--193, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  11. M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu, O. Cooper, A. Edakkunni, and W. Hong. Design Considerations for High Fan-In Systems: The HiFi Approach. In CIDR, pages 290--304, 2005.Google ScholarGoogle Scholar
  12. H. Gonzalez, J. Han, X. Li, and D. Klabjan. Warehousing and Analyzing Massive RFID Data Sets. In ICDE, page 83, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Ho, D. W. Engels, and S. E. Sarma. HiQ: A Hierarchical Q-learning Algorithm to Solve the Reader Collision Problem. In SAINT Workshops, pages 88--91, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J. Haas. MCDB: A Monte Carlo Approach to Managing Uncertain Data. In SIGMOD, pages 687--700, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and J. Widom. Declarative Support for Sensor Data Cleaning. In Pervasive, pages 83--100, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. S. R. Jeffery, M. J. Franklin, and M. N. Garofalakis. An Adaptive RFID Middleware for Supporting Metaphysical Data Independence. VLDB J., 17(2):265--289, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin. Adaptive Cleaning for RFID Data Streams. In VLDB, pages 163--174, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. N. Khoussainova, M. Balazinska, and D. Suciu. Towards Correcting Input Data Errors Probabilistically Using Integrity Constraints. In MobiDE, pages 43--50, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. N. Khoussainova, M. Balazinska, and D. Suciu. Probabilistic Event Extraction from RFID Data. In ICDE, pages 1480--1482, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Myung, W. Lee, J. Srivastava, and T. K. Shih. Tag-Splitting: Adaptive Collision Arbitration Protocols for RFID Tag Identification. IEEE Trans. Parallel Distrib. Syst., 18(6):763--775, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby. A Deferred Cleansing Method for RFID Data Analytics. In VLDB, pages 175--186, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. M. Ross. Introduction to Probability Models, Ninth Edition. Academic Press, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. Sullivan. RFID Implementation Challenges Persist, All This Time Later. InformationWeek, October 2005.Google ScholarGoogle Scholar
  24. T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. Shenoy. Probabilistic Inference over RFID Streams in Mobile Environments. In ICDE, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Waldrop, D. W. Engels, and S. E. Sarma. Colorwave: An Anticollision Algorithm for the Reader Collision Problem. In ICC, pages 1206--1210, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  26. F. Wang and P. Liu. Temporal Management of RFID Data. In VLDB, pages 1128--1139, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Want. The Magic of RFID. ACM Queue, 2(7):40--48, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Xie, J. Yang, Y. Chen, H. Wang, and P. S. Yu. A Sampling-Based Approach to Information Recovery. In ICDE, pages 476--485, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Leveraging spatio-temporal redundancy for RFID data cleansing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGMOD '10: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data
      June 2010
      1286 pages
      ISBN:9781450300322
      DOI:10.1145/1807167

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 6 June 2010

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate785of4,003submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader