skip to main content
10.1145/2556195.2556262acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article

User modeling in search logs via a nonparametric bayesian approach

Authors Info & Claims
Published:24 February 2014Publication History

ABSTRACT

Searchers' information needs are diverse and cover a broad range of topics; hence, it is important for search engines to accurately understand each individual user's search intents in order to provide optimal search results. Search log data, which records users' search behaviors when interacting with search engines, provides a valuable source of information about users' search intents. Therefore, properly characterizing the heterogeneity among the users' observed search behaviors is the key to accurately understanding their search intents and to further predicting their behaviors.

In this work, we study the problem of user modeling in the search log data and propose a generative model, dpRank, within a non-parametric Bayesian framework. By postulating generative assumptions about a user's search behaviors, dpRank identifies each individual user's latent search interests and his/her distinct result preferences in a joint manner. Experimental results on a large-scale news search log data set validate the effectiveness of the proposed approach, which not only provides in-depth understanding of a user's search intents but also benefits a variety of personalized applications.

References

  1. E. Agichtein, E. Brill, S. Dumais, and R. Ragno. Learning user interaction models for predicting web search result preferences. In SIGIR'06, pages 3--10. ACM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval, volume 463. ACM press New York, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. Bian, X. Li, F. Li, Z. Zheng, and H. Zha. Ranking specialization for web search: a divide-and-conquer approach by using topical ranksvm. In WWW'2010, pages 131--140. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. Journal of Machine Learning Research-Proceedings Track, 14:1--24, 2011.Google ScholarGoogle Scholar
  5. O. Chapelle and Y. Zhang. A dynamic bayesian network click model for web search ranking. In WWW'09, pages 1--10. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. V. Dang. Ranklib-v2.1. http://people.cs.umass.edu/ vdang/ranklib.html.Google ScholarGoogle Scholar
  7. G. E. Dupret and B. Piwowarski. A user browsing model to predict search engine click data from past observations. In SIGIR'08, pages 331--338. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. T. Ferguson. A bayesian analysis of some nonparametric problems. The annals of statistics, pages 209--230, 1973.Google ScholarGoogle Scholar
  9. R. Fidel and M. Crandall. Users' perception of the performance of a filtering system. In SIGIR'97, pages 198--205. ACM, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. G. Giannopoulos, U. Brefeld, T. Dalamagas, and T. Sellis. Learning to rank user intent. In CIKM'2011, pages 195--200. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. B. Jansen, A. Spink, and T. Saracevic. Real life, real users, and real needs: a study and analysis of user queries on the web. Information processing & management, 36(2):207--227, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. Joachims. Optimizing search engines using clickthrough data. In KDD'02, pages 133--142. ACM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough data as implicit feedback. In SIGIR'05, pages 154--161. ACM, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. C. König, M. Gamon, and Q. Wu. Click-through prediction for news queries. In SIGIR'09, pages 347--354. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Kulkarni, J. Teevan, K. Svore, and S. Dumais. Understanding temporal query dynamics. In WSDM'11, pages 167--176. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. F. Liu, C. Yu, and W. Meng. Personalized web search by mapping user queries to categories. In CIKM'02, pages 558--565. ACM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. R. Neal. Markov chain sampling methods for dirichlet process mixture models. Journal of computational and graphical statistics, 9(2):249--265, 2000.Google ScholarGoogle Scholar
  18. R. Neal. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 54:113--162, 2010.Google ScholarGoogle Scholar
  19. D. Rose and D. Levinson. Understanding user goals in web search. In WWW'04, pages 13--19. ACM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW'2001, pages 285--295. ACM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Sethuraman. A constructive definition of dirichlet priors. Statistica Sinica, 4:639--650, 1994.Google ScholarGoogle Scholar
  22. F. Silvestri. Mining query logs: Turning search usage data into knowledge. Foundations and Trends in Information Retrieval, 4(1--2):1--174, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. Sontag, K. Collins-Thompson, P. N. Bennett, R. W. White, S. Dumais, and B. Billerbeck. Probabilistic models for personalizing web search. In WSDM'12, pages 433--442. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Teevan, S. Dumais, and D. Liebling. To personalize or not to personalize: modeling queries with variation in user intent. In SIGIR'08, pages 163--170. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical dirichlet processes. Journal of the American Statistical Association, 101(476):1566--1581, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  26. R. W. White and S. M. Drucker. Investigating behavioral variability in web search. In WWW'07, pages 21--30. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Q. Wu, C. Burges, K. Svore, and J. Gao. Adapting boosting for information retrieval measures. Information Retrieval, 13(3):254--270, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Zhang, W. Chen, D. Wang, and Q. Yang. User-click modeling for understanding and predicting search-behavior. In KDD'2011, pages 1388--1396. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. User modeling in search logs via a nonparametric bayesian approach

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      WSDM '14: Proceedings of the 7th ACM international conference on Web search and data mining
      February 2014
      712 pages
      ISBN:9781450323512
      DOI:10.1145/2556195

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 24 February 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      WSDM '14 Paper Acceptance Rate64of355submissions,18%Overall Acceptance Rate498of2,863submissions,17%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader