skip to main content
research-article

Magic decorator: automatic material suggestion for indoor digital scenes

Published:02 November 2015Publication History
Skip Abstract Section

Abstract

Assigning textures and materials within 3D scenes is a tedious and labor-intensive task. In this paper, we present Magic Decorator, a system that automatically generates material suggestions for 3D indoor scenes. To achieve this goal, we introduce local material rules, which describe typical material patterns for a small group of objects or parts, and global aesthetic rules, which account for the harmony among the entire set of colors in a specific scene. Both rules are obtained from collections of indoor scene images. We cast the problem of material suggestion as a combinatorial optimization considering both local material and global aesthetic rules. We have tested our system on various complex indoor scenes. A user study indicates that our system can automatically and efficiently produce a series of visually plausible material suggestions which are comparable to those produced by artists.

Skip Supplemental Material Section

Supplemental Material

References

  1. An, X., and Pellacini, F. 2008. Appprop: all-pairs appearance-space edit propagation. ACM Trans. Graph. 27, 3, 40:1--40:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Asha, V., Bhajantri, N. U., and Nagabhushan, P. 2011. Glcm-based chi-square histogram distance for automatic detection of defects on patterned textures. Int. J. Comput. Vision Robot. 2, 4 (Feb.), 302--313. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bell, S., Upchurch, P., Snavely, N., and Bala, K. 2013. Opensurfaces: A richly annotated catalog of surface appearance. ACM Trans. Graph. 32, 4 (July), 111:1--111:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bell, S., Upchurch, P., Snavely, N., and Bala, K. 2015. Material recognition in the wild with the materials in context database. Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  5. Chajdas, M. G., Lefebvre, S., and Stamminger, M. 2010. Assisted texture assignment. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D '10, 173--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chen, T., Zhu, Z., Shamir, A., Hu, S.-M., and Cohen-Or, D. 2013. 3-sweep: Extracting editable objects from a single photo. ACM Trans. Graph. 32, 6 (Nov.), 195:1--195:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chen, K., Lai, Y.-K., Wu, Y.-X., Martin, R., and Hu, S.-M. 2014. Automatic semantic modeling of indoor scenes from low-quality rgb-d data using contextual information. ACM Trans. Graph. 33, 6 (Nov.), 208:1--208:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chia, A. Y.-S., Zhuo, S., Gupta, R. K., Tai, Y.-W., Cho, S.-Y., Tan, P., and Lin, S. 2011. Semantic colorization with internet images. ACM Trans. Graph. 30, 6 (Dec.), 156:1--156:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., and Xu, Y.-Q. 2006. Color harmonization. ACM Trans. Graph. 25, 3 (July), 624--630. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Csurka, G., Skaff, S., Marchesotti, L., and Saunders, C. 2011. Building look & feel concept models from color combinations. The Visual Computer 27, 12, 1039--1053. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Endres, I., Farhadi, A., Hoiem, D., and Forsyth, D. 2010. The benefits and challenges of collecting richer object annotations. In CVPR. Workshops, 2010 IEEE Computer Society Conference on, 1--8.Google ScholarGoogle Scholar
  12. Faridul, H. S., Pouli, T., Chamaret, C., Stauder, J., Trémeau, A., Reinhard, E., et al. 2014. A survey of color mapping and its applications. In Eurographics 2014-State of the Art Reports, The Eurographics Association, 43--67.Google ScholarGoogle Scholar
  13. Fisher, M., and Hanrahan, P. 2010. Context-based search for 3d models. ACM Trans. Graph. 29, 6 (Dec.), 182:1--182:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., and Hanrahan, P. 2012. Example-based synthesis of 3d object arrangements. ACM Trans. Graph. 31, 6 (Nov.), 135:1--135:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Huang, H.-Z., Zhang, S.-H., Martin, R. R., and Hu, S.-M. 2014. Learning natural colors for image recoloring. Computer Graphics Forum 33, 7, 299--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Huang, Q., Wang, H., and Koltun, V. 2015. Single-view reconstruction via joint analysis of image and shape collections. ACM Trans. Graph. 34, 4 (July), 87:1--87:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jain, A., Thormählen, T., Ritschel, T., and Seidel, H.-P. 2012. Material memex: Automatic material suggestions for 3d objects. ACM Trans. Graph. 31, 6 (Nov.), 143:1--143:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. 1983. Optimization by simulated annealing. SCIENCE 220, 4598, 671--680.Google ScholarGoogle Scholar
  19. Leifman, G., and Tal, A. 2012. Mesh colorization. Computer Graphics Forum 31, 2pt2, 421--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Trans. Graph. 23, 3, 689--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lin, S., Ritchie, D., Fisher, M., and Hanrahan, P. 2013. Probabilistic color-by-numbers: Suggesting pattern colorizations using factor graphs. ACM Trans. Graph. 32, 4 (July), 37:1--37:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Liu, T., McCann, J., Li, W., and Funkhouser, T. 2015. Composition-aware scene optimization for product images. Computer Graphics Forum 34, 2, 13--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Merrell, P., Schkufza, E., and Koltun, V. 2010. Computer-generated residential building layouts. ACM Trans. Graph. 29, 6 (Dec.), 181:1--181:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Miao, Y., Hu, F., Zhang, X., Chen, J., and Pajarola, R. 2015. Symmsketch: Creating symmetric 3D free-form shapes from 2D sketches. Computational Visual Media 1, 1, 3--16.Google ScholarGoogle ScholarCross RefCross Ref
  25. Nguyen, C. H., Ritschel, T., Myszkowski, K., Eisemann, E., and Seidel, H.-P. 2012. 3D Material Style Transfer. Computer Graphics Forum (Proc. EUROGRAPHICS 2012) 2, 31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. O'Donovan, P., Agarwala, A., and Hertzmann, A. 2011. Color compatibility from large datasets. ACM Trans. Graph. 30, 4 (July), 63:1--63:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Oliva, A., and Torralba, A. 2001. Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV 42, 145--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Qin, X., and Yang, Y.-H. 2005. Basic gray level aura matrices: theory and its application to texture synthesis. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, vol. 1, 128--135 Vol. 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Russell, B., Torralba, A., Murphy, K., and Freeman, W. 2008. Labelme: A database and web-based tool for image annotation. IJCV. 77, 1--3, 157--173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Tibshirani, R. 1996. Regression Shrinkage and Selection Via the Lasso. J. Royal. Statist. Soc B. 58, 1, 267--288.Google ScholarGoogle ScholarCross RefCross Ref
  31. Wang, B., Yu, Y., Wong, T.-T., Chen, C., and Xu, Y.-Q. 2010. Data-driven image color theme enhancement. ACM Trans. Graph. 29, 6 (Dec.), 146:1--146:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Welsh, T., Ashikhmin, M., and Mueller, K. 2002. Transferring color to greyscale images. ACM Trans. Graph. 21, 3, 277--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Xu, K., Li, Y., Ju, T., Hu, S.-M., and Liu, T.-Q. 2009. Efficient affinity-based edit propagation using k-d tree. ACM Trans. Graph. 28, 5, 118:1--118:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Xu, K., Zheng, H., Zhang, H., Cohen-Or, D., Liu, L., and Xiong, Y. 2011. Photo-inspired model-driven 3d object modeling. ACM Trans. Graph. 30, 4, 80:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Xu, K., Chen, K., Fu, H., Sun, W.-L., and Hu, S.-M. 2013. Sketch2Scene: Sketch-based co-retrieval and co-placement of 3D models. ACM Trans. Graph. 32, 4, 123:1--123:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. J. 2011. Make it home: automatic optimization of furniture arrangement. ACM Trans. Graph. 30, 4, 86:1--86:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yu, L.-F., Yeung, S. K., Terzopoulos, D., and Chan, T. F. 2012. Dressup!: Outfit synthesis through automatic optimization. ACM Trans. Graph. 31, 6, 134:1--134:14. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Magic decorator: automatic material suggestion for indoor digital scenes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 34, Issue 6
          November 2015
          944 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2816795
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 November 2015
          Published in tog Volume 34, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader