skip to main content
research-article

AutoConnect: computational design of 3D-printable connectors

Published:02 November 2015Publication History
Skip Abstract Section

Abstract

We present AutoConnect, an automatic method that creates customized, 3D-printable connectors attaching two physical objects together. Users simply position and orient virtual models of the two objects that they want to connect and indicate some auxiliary information such as weight and dimensions. Then, AutoConnect creates several alternative designs that users can choose from for 3D printing. The design of the connector is created by combining two holders, one for each object. We categorize the holders into two types. The first type holds standard objects such as pipes and planes. We utilize a database of parameterized mechanical holders and optimize the holder shape based on the grip strength and material consumption. The second type holds free-form objects. These are procedurally generated shell-gripper designs created based on geometric analysis of the object. We illustrate the use of our method by demonstrating many examples of connectors and practical use cases.

Skip Supplemental Material Section

Supplemental Material

References

  1. Agrawala, M., Phan, D., Heiser, J., Haymaker, J., Klingner, J., Hanrahan, P., and Tversky, B. 2003. Designing effective step-by-step assembly instructions. ACM Trans. Graph. 22, 3 (July), 828--837. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Anjyo, K., Lewis, J. P., and Pighin, F. 2014. Scattered data interpolation for computer graphics. In ACM SIGGRAPH 2014 Courses, 27:1--27:69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Autodesk. AutoCAD. http://www.autodesk.com.Google ScholarGoogle Scholar
  4. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. 31, 4 (July), 47:1--47:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans. Graph. 33, 4 (July), 96:1--96:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bicchi, A., and Kumar, V. 2000. Robotic grasping and contact: a review. In Proc. IEEE International Conference on Robotics and Automation, 348--353.Google ScholarGoogle Scholar
  7. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4 (July), 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3D-printing of non-assembly, articulated models. ACM Trans. Graph. 31, 6 (Nov.), 130:1--130:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. 32, 6 (Nov.), 186:1--186:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chen, X., Zheng, C., Xu, W., and Zhou, K. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Trans. Graph. 33, 4 (July), 95:1--95:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Trans. Graph. 32, 4 (July), 83:1--83:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dassault Systèmes. Solidworks. http://www.solidworks.com/.Google ScholarGoogle Scholar
  13. Fish, N., Averkiou, M., van Kaick, O., Sorkine-Hornung, O., Cohen-Or, D., and Mitra, N. J. 2014. Meta-representation of shape families. ACM Trans. Graph. 33, 4 (July), 34:1--34:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iwires: An analyze-and-edit approach to shape manipulation. ACM Trans. Graph. 28, 3 (July), 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gelfand, N., and Guibas, L. J. 2004. Shape segmentation using local slippage analysis. In Proc. 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 214--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gelfand, N., Ikemoto, L., Rusinkiewicz, S., and Levoy, M. 2003. Geometrically stable sampling for the icp algorithm. In Int. Conf. 3-D Digital Imaging and Modeling, 260--267.Google ScholarGoogle Scholar
  17. Hirukawa, H., Matsui, T., and Takase, K. 1994. Automatic determination of possible velocity and applicable force of frictionless objects in contact from a geometric model. IEEE Transactions on Robotics and Automation 10, 3 (Jun), 309--322.Google ScholarGoogle ScholarCross RefCross Ref
  18. Hu, R., Li, H., Zhang, H., and Cohen-Or, D. 2014. Approximate pyramidal shape decomposition. ACM Trans. Graph. 33, 6 (Nov.), 213:1--213:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Koo, B., Li, W., Yao, J., Agrawala, M., and Mitra, N. J. 2014. Creating works-like prototypes of mechanical objects. ACM Trans. Graph. 33, 6 (Nov.), 217:1--217:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Li, H., Alhashim, I., Zhang, H., Shamir, A., and Cohen-Or, D. 2012. Stackabilization. ACM Trans. Graph. 31, 6 (Nov.), 158:1--158:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., and Chen, B. 2014. Build-to-last: Strength to weight 3D printed objects. ACM Trans. Graph. 33, 4 (July), 97:1--97:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mitra, N. J., Guibas, L. J., and Pauly, M. 2006. Partial and approximate symmetry detection for 3D geometry. ACM Trans. Graph. 25, 3 (July), 560--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T. 2006. A planar-reflective symmetry transform for 3D shapes. ACM Trans. Graph. 25, 3 (July), 549--559. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Powell, M. J. D. 1998. Direct search algorithms for optimization calculations. Acta Numerica 7 (1), 287--336.Google ScholarGoogle ScholarCross RefCross Ref
  25. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3D fabrication. ACM Trans. Graph. 32, 4 (July), 81:1--81:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Saul, G., Lau, M., Mitani, J., and Igarashi, T. 2011. Sketchchair: An all-in-one chair design system for end users. In Proc. 5th International Conference on Tangible, Embedded, and Embodied Interaction, ACM, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Schulz, A., Shamir, A., Levin, D. I. W., Sitthi-amorn, P., and Matusik, W. 2014. Design and fabrication by example. ACM Trans. Graph. 33, 4 (July), 62:1--62:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Shi, J., and Malik, J. 2000. Normalized cuts and image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on 22, 8 (Aug), 888--905. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM Trans. Graph. 31, 4 (July), 48:1--48:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., and Gross, M. 2014. Computational design of linkage-based characters. ACM Trans. Graph. 33, 4 (July), 64:1--64:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Umetani, N., and Schmidt, R. 2013. Cross-sectional structural analysis for 3D printing optimization. In SIGGRAPH Asia 2013 Technical Briefs, ACM, New York, NY, USA, SA '13, 5:1--5:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. 31, 4 (July), 86:1--86:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Umetani, N., Koyama, Y., Schmidt, R., and Igarashi, T. 2014. Pteromys: Interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph. 33, 4 (July), 65:1--65:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Vanek, J., Galicia, J. A. G., and Benes, B. 2014. Clever support: Efficient support structure generation for digital fabrication. Computer Graphics Forum 33, 5, 117--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. von Luxburg, U. 2007. A tutorial on spectral clustering. Statistics and Computing 17, 4, 395--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3D objects with skin-frame structures. ACM Trans. Graph. 32, 6 (Nov.), 177:1--177:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wilson, R. H. 1992. On Geometric Assembly Planning. PhD thesis, Stanford, CA, USA. UMI Order No. GAX92-21686. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B. 2009. Joint-aware manipulation of deformable models. ACM Trans. Graph. 28, 3 (July), 35:1--35:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhou, Y., Sueda, S., Matusik, W., and Shamir, A. 2014. Boxelization: Folding 3D objects into boxes. ACM Trans. Graph. 33, 4 (July), 71:1--71:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Trans. Graph. 31, 6 (Nov.), 127:1--127:10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. AutoConnect: computational design of 3D-printable connectors

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 34, Issue 6
              November 2015
              944 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/2816795
              Issue’s Table of Contents

              Copyright © 2015 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 2 November 2015
              Published in tog Volume 34, Issue 6

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader