skip to main content
research-article

Motion-guided mechanical toy modeling

Published:01 November 2012Publication History
Skip Abstract Section

Abstract

We introduce a new method to synthesize mechanical toys solely from the motion of their features. The designer specifies the geometry and a time-varying rotation and translation of each rigid feature component. Our algorithm automatically generates a mechanism assembly located in a box below the feature base that produces the specified motion. Parts in the assembly are selected from a parameterized set including belt-pulleys, gears, crank-sliders, quick-returns, and various cams (snail, ellipse, and double-ellipse). Positions and parameters for these parts are optimized to generate the specified motion, minimize a simple measure of complexity, and yield a well-distributed layout of parts over the driving axes. Our solution uses a special initialization procedure followed by simulated annealing to efficiently search the complex configuration space for an optimal assembly.

Skip Supplemental Material Section

Supplemental Material

References

  1. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4 (July), 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chenney, S., and Forsyth, D. A. 2000. Sampling plausible solutions to multi-body constraint problems. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH '00, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chiou, S.-J., and Sridhar, K. 1999. Automated conceptual design of mechanisms. Mechanism and Machine Theory 34, 3, 467--495.Google ScholarGoogle ScholarCross RefCross Ref
  4. Comaniciu, D., Meer, P., and Member, S. 2002. Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603--619. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4 (July), 62:1--62:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Finger, S., and Rinderle, J. 1989. A Transformational Approach to Mechanical Design using a Bond Graph Grammar, vol. 17. ASME, 107--116.Google ScholarGoogle Scholar
  7. Frost, R. 2007. Making Mad Toys & Mechanical Marvels in Wood. Sterling.Google ScholarGoogle Scholar
  8. Gao, X., and Chou, S. 1998. Solving geometric constraint systems. ii. a symbolic approach and decision of rc-constructibility. Computer-Aided Design 30, 115--122.Google ScholarGoogle ScholarCross RefCross Ref
  9. Gottschalk, S., Lin, M. C., and Manocha, D. 1996. Obbtree: a hierarchical structure for rapid interference detection. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, ACM, SIGGRAPH '96, 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gui, J.-K., and Mntyl, M. 1994. Functional understanding of assembly modelling. Computer-Aided Design 26, 6, 435--451.Google ScholarGoogle ScholarCross RefCross Ref
  11. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29 (July), 61:1--61:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hildebrand, K., Bickel, B., and Alexa, M. 2012. crdbrd: Shape fabrication by sliding planar slices. In to appear: Computer Graphics Forum (Eurographics 2012), vol. 31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hoover, S. P., and Rinderle, J. R. 1989. A synthesis strategy for mechanical devices. Research in Engineering Design 1, 87--103.Google ScholarGoogle ScholarCross RefCross Ref
  14. Kim, J., Kim, K., Choi, K., and Lee, J. 2000. Solving 3d geometric constraints for assembly modelling. The International Journal of Advanced Manufacturing Technology 16, 843--849. 10.1007/s001700070019.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kondo, K. 1992. Algebraic method for manipulation of dimensional relationships in geometric models. Computer-Aided Design 24, 3, 141--147.Google ScholarGoogle ScholarCross RefCross Ref
  16. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3d furniture models to fabricatable parts and connectors. ACM Trans. Graph. 30, 4 (Aug.), 85:1--85:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Li, Y.-T., Hu, S.-M., and Sun, J.-G. 2002. A constructive approach to solving 3-d geometric constraint systems using dependence analysis. Computer-Aided Design 30, 3, 97--108.Google ScholarGoogle ScholarCross RefCross Ref
  18. McCrae, J., Singh, K., and Mitra, N. J. 2011. Slices: a shape-proxy based on planar sections. ACM Trans. Graph. 30, 6 (Dec.), 168:1--168:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Merrell, P., Schkufza, E., and Koltun, V. 2010. Computer-generated residential building layouts. ACM Trans. Graph. 29 (December), 181:1--181:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011. Interactive furniture layout using interior design guidelines. ACM Trans. Graph. 30 (Aug.), 87:1--87:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mitra, N. J., Yang, Y.-L., Yan, D.-M., Li, W., and Agrawala, M. 2010. Illustrating how mechanical assemblies work. ACM Trans. Graph. 29 (July), 58:1--58:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mori, Y., and Igarashi, T. 2007. Plushie: an interactive design system for plush toys. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Neufeld, L. 2003. Making Toys That Teach: With Step-by-Step Instructions and Plans. Taunton Press.Google ScholarGoogle Scholar
  24. Peng, X., Lee, K., and Chen, L. 2006. A geometric constraint solver for 3-d assembly modeling. The International Journal of Advanced Manufacturing Technology 28, 561--570. 10.1007/s00170-004-2391-1.Google ScholarGoogle ScholarCross RefCross Ref
  25. Peppe, R. 2005. Making Mechanical Toys. Crowood Press.Google ScholarGoogle Scholar
  26. Roy, U., Pramanik, N., Sudarsan, R., Sriram, R., and Lyons, K. 2001. Function-to-form mapping: model, representation and applications in design synthesis. Computer-Aided Design 33, 10, 699--719.Google ScholarGoogle ScholarCross RefCross Ref
  27. Stava, O., Vanek, J., Carr, N., and Mech, R. 2012. Stress relief: Improving structural strength of 3d printable objects. In to appear: Proceedings of SIGGRAPH 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., and Koltun, V. 2011. Metropolis procedural modeling. ACM Trans. Graph. 30 (Apr.), 11:1--11:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tierney, L., and Mira, A. 1999. Some adaptive monte carlo methods for bayesian inference. Statistics in Medicine 18, 2507--2515.Google ScholarGoogle ScholarCross RefCross Ref
  30. Uicker, J. 2010. Theory of Machines and Mechanisms. Oxford University Press.Google ScholarGoogle Scholar
  31. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH '97, 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Verroust, A., Schonek, F., and Roller, D. 1992. Rule-oriented method for parameterized computer-aided design. Computer-Aided Design 24, 10, 531--540.Google ScholarGoogle ScholarCross RefCross Ref
  33. Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. ACM Trans. Graph. 28 (July), 60:1--60:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wampler, II, C. W. 1986. Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern. 16 (January), 93--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2009. Optimizing walking controllers. ACM Trans. Graph. 28 (December), 168:1--168:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Xin, S., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., and Cohen-Or, D. 2011. Making burr puzzles from 3d models. ACM Trans. Graph. 30, 4 (Aug.), 97:1--97:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B. 2009. Joint-aware manipulation of deformable models. ACM Trans. Graph. 28 (July), 35:1--35:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. J. 2011. Make it home: automatic optimization of furniture arrangement. ACM Trans. Graph. 30 (Aug.), 86:1--86:12. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Motion-guided mechanical toy modeling

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 31, Issue 6
          November 2012
          794 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2366145
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 November 2012
          Published in tog Volume 31, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader