skip to main content
research-article

Illustrating how mechanical assemblies work

Published:26 July 2010Publication History
Skip Abstract Section

Abstract

How things work visualizations use a variety of visual techniques to depict the operation of complex mechanical assemblies. We present an automated approach for generating such visualizations. Starting with a 3D CAD model of an assembly, we first infer the motions of individual parts and the interactions between parts based on their geometry and a few user specified constraints. We then use this information to generate visualizations that incorporate motion arrows, frame sequences and animation to convey the causal chain of motions and mechanical interactions between parts. We present results for a wide variety of assemblies.

Skip Supplemental Material Section

Supplemental Material

tp043-10.mp4

mp4

36.6 MB

References

  1. Agrawala, M., Phan, D., Heiser, J., Haymaker, J., Klingner, J., Hanrahan, P., and Tversky, B. 2003. Designing effective step-by-step assembly instructions. Proc. ACM SIGGRAPH, 828--837. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Amerongen, C. V. 1967. The Way Things Work: An Illustrated Encyclopedia of Technology. Simon and Schuster.Google ScholarGoogle Scholar
  3. Assa, J., Caspi, Y., and Cohen-Or, D. 2005. Action synopsis: pose selection and illustration. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3, 667--676. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Benkö, P., Martin, R. R., and Várady, T. 2001. Algorithms for reverse engineering boundary representation models. Computer Aided Design 33, 11, 839--851.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bouvier-Zappa, S., Ostromoukhov, V., and Poulin, P. 2007. Motion cues for illustration of skeletal motion capture data. In Proceedings of the 5th international symposium on Non-photorealistic animation and rendering, 140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Brain, M. 2001. How stuff works. Hungry Minds New York.Google ScholarGoogle Scholar
  7. Bruckner, S., and Groller, M. E. 2006. Exploded views for volume data. IEEE Transactions on Visualization and Computer Graphics 12, 5, 1077--1084. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Burns, M., and Finkelstein, A. 2008. Adaptive cutaways for comprehensible rendering of polygonal scenes. In SIGGRAPH Asia '08: ACM SIGGRAPH Asia 2008 papers, ACM, New York, NY, USA, 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. In Proc. ACM SIGGRAPH, 905--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Collomosse, J., Rowntree, D., and Hall, P. 2005. Rendering cartoon-style motion cues in post-production video. Graphical Models 67, 549--564. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cutting, J. E. 2002. Representing motion in a static image: constraints and parallels in art, science, and popular culture. Perception 31, 1165--1193.Google ScholarGoogle ScholarCross RefCross Ref
  12. Davidson, J. K., and Hunt, K. H. 2004. Robots and Screw Theory: Applications of Kinematics and Statics to Robotics. Oxford University Press.Google ScholarGoogle Scholar
  13. Davis, R. 2007. Magic paper: Sketch-understanding research. Computer 40, 9, 34--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Demarsin, K., Vanderstraeten, D., Volodine, T., and Roose, D. 2007. Detection of closed sharp edges in point clouds using normal estimation and graph theory. Computer Aided Design 39, 4, 276--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dony, R., Mateer, J., Robinson, J., and Day, M. 2005. Iconic versus naturalistic motion cues in automated reverse storyboarding. In Conf. on Visual Media Production, 17--25.Google ScholarGoogle Scholar
  16. Feiner, S., and Seligmann, D. 1992. Cutaways and ghosting: satisfying visibility constraints in dynamic 3D illustrations. The Visual Computer 8, 5, 292--302.Google ScholarGoogle ScholarCross RefCross Ref
  17. Fu, H., Cohen-Or, D., Dror, G., and Sheffer, A. 2008. Upright orientation of man-made objects. In ACM Trans. on Graphics (Proc. SIGGRAPH), 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iWIRES: An analyze-and-edit approach to shape manipulation. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3, #33, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gelfand, N., and Guibas, L. J. 2004. Shape segmentation using local slippage analysis. In Proc. of Symp. of Geometry Processing, 214--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Goldman, D. B., Curless, B., Salesin, D., and Seitz, S. M. 2006. Schematic storyboarding for video visualization and editing. ACM Trans. on Graphics (Proc. SIGGRAPH) 25, 3, 862--871. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hegarty, M., Kriz, S., and Cate, C. 2003. The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction 21, 4, 325--360.Google ScholarGoogle ScholarCross RefCross Ref
  22. Hegarty, M. 1992. Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, and Cognition 18, 5, 1084--1102.Google ScholarGoogle ScholarCross RefCross Ref
  23. Hegarty, M. 2000. Capacity limits in diagrammatic reasoning. In Theory and Application of Diagrams. 335--348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Heiser, J., and Tversky, B. 2006. Arrows in comprehending and producing mechanical diagrams. Cognitive Science 30, 581--592.Google ScholarGoogle ScholarCross RefCross Ref
  25. Joshi, A., and Rheingans, P. 2005. Illustration-inspired techniques for visualizing time-varying data. In IEEE Visualization, 679--686.Google ScholarGoogle Scholar
  26. Kawagishi, Y., Hatsuyama, K., and Kondo, K. 2003. Cartoon blur: Non-photorealistic motion blur. In Proc. of Computer Graphics International, 276--281.Google ScholarGoogle Scholar
  27. Kim, B., and Essa, I. 2005. Video-based nonphotorealistic and expressive illustration of motion. Proceedings of Computer Graphics International (CGI 05), 32--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Klein, F., and (translator), M. W. H. 1893. A comparative review of recent researches in geometry. Bull. New York Math. Soc., 215--249.Google ScholarGoogle Scholar
  29. Kriz, S., and Hegarty, M. 2007. Top-down and bottom-up influences on learning from animations. International Journal of Human-Computer Studies 65, 11, 911--930. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Langone, J. 1999. National Geographic's how things work: everyday technology explained. National Geographic.Google ScholarGoogle Scholar
  31. Li, W., Ritter, L., Agrawala, M., Curless, B., and Salesin, D. 2007. Interactive cutaway illustrations of complex 3d models. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 3, #31, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Li, W., Agrawala, M., Curless, B., and Salesin, D. 2008. Automated generation of interactive 3d exploded view diagrams. ACM Trans. on Graphics (Proc. SIGGRAPH) 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Macaulay, D. 1998. The New Way Things Work.Google ScholarGoogle Scholar
  34. Masuch, M., Schlechtweg, S., and Schulz, R. 1999. Speedlines: depicting motion in motionless pictures. In SIGGRAPH Conference abstracts. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mayer, R. 2001. Multimedia learning. Cambridge Univ Pr. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. McCloud, S., 1993. Understanding Comics. 1993.Google ScholarGoogle Scholar
  37. McGuffin, M. J., Tancau, L., and Balakrishnan, R. 2003. Using deformations for browsing volumetric data. In Proceedings of the 14th IEEE Visualization, 53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Mehra, R., Zhou, Q., Long, J., Sheffer, A., Gooch, A., and Mitra, N. J. 2009. Abstraction of man-made shapes. In ACM Trans. on Graphics (Proc. SIGGRAPH Asia), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Mitra, N. J., Guibas, L., and Pauly, M. 2006. Partial and approximate symmetry detection for 3D geometry. 560--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Narayanan, N., and Hegarty, M. 1998. On designing comprehensible interactive hypermedia manuals. International Journal of Human-Computers Studies 48, 2, 267--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Narayanan, N., and Hegarty, M. 2002. Multimedia design for communication of dynamic information. International journal of human-computer studies 57, 4, 279--315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Nienhaus, M., and Döllner, J. 2005. Depicting dynamics using principles of visual art and narrations. IEEE Comput. Graph. Appl. 25, 3, 40--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Seligmann, D., and Feiner, S. 1991. Automated generation of intent-based 3D illustrations. In Proc. ACM SIGGRAPH, ACM, 132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Thompson, D. W. 1917. On Growth and Form. Dover Publications.Google ScholarGoogle Scholar
  45. Tversky, B., Morrison, J. B., and Betrancourt, M. 2002. Animation: Can it facilitate? International Journal of Human Computer Studies 5, 247--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Viola, I., Kanitsar, A., and Gröller, M. E. 2004. Importance-driven volume rendering. In Proceedings of IEEE Visualization 2004, H. Rushmeier, G. Turk, J. van Wijk, 139--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Whiting, E., Ochsendorf, J., and Durand, F. 2009. Procedural modeling of structurally-sound masonry buildings. ACM Transactions on Graphics 28, 5, 112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B. 2009. Joint-aware manipulation of deformable models. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3, #33, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Illustrating how mechanical assemblies work

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 29, Issue 4
              July 2010
              942 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/1778765
              Issue’s Table of Contents

              Copyright © 2010 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 26 July 2010
              Published in tog Volume 29, Issue 4

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader