skip to main content
research-article

Spin-it: optimizing moment of inertia for spinnable objects

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

Spinning tops and yo-yos have long fascinated cultures around the world with their unexpected, graceful motions that seemingly elude gravity. We present an algorithm to generate designs for spinning objects by optimizing rotational dynamics properties. As input, the user provides a solid 3D model and a desired axis of rotation. Our approach then modifies the mass distribution such that the principal directions of the moment of inertia align with the target rotation frame. We augment the model by creating voids inside its volume, with interior fill represented by an adaptive multi-resolution voxelization. The discrete voxel fill values are optimized using a continuous, nonlinear formulation. Further, we optimize for rotational stability by maximizing the dominant principal moment. We extend our technique to incorporate deformation and multiple materials for cases where internal voids alone are insufficient. Our method is well-suited for a variety of 3D printed models, ranging from characters to abstract shapes. We demonstrate tops and yo-yos that spin surprisingly stably despite their asymmetric appearance.

Skip Supplemental Material Section

Supplemental Material

References

  1. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. 31, 4, 47:1--47:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bendsøe, M., and Sigmund, O. 2012. Topology Optimization: Theory, Methods and Applications. Engineering online library. Springer.Google ScholarGoogle Scholar
  3. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Byrd, R. H., Nocedal, J., and Waltz, R. A. 2006. Knitro: An integrated package for nonlinear optimization. In Large-scale nonlinear optimization. Springer, 35--59.Google ScholarGoogle Scholar
  5. Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3D-printing of non-assembly, articulated models. ACM Trans. Graph. 31, 6, 130:1--130:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ceylan, D., Li, W., Mitra, N., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. 32, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Trans. Graph. 32, 4, 135:1--135:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cohen, R. J. 1977. The tippe top revisited. American Journal of Physics 45, 1, 12--17.Google ScholarGoogle ScholarCross RefCross Ref
  9. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Trans. Graph. 32, 4, 83:1--83:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Crabtree, H. 1909. An Elementary Treatment of the Theory of Spinning Tops. Longmans, Green and Co.Google ScholarGoogle Scholar
  11. Cross, R. 2013. The rise and fall of spinning tops. American Journal of Physics 81, 280.Google ScholarGoogle ScholarCross RefCross Ref
  12. DeRose, G. C. J., and Díaz, A. R. 1996. Hierarchical solution of large-scale three-dimensional topology optimization problems. In ASME Design Engineering Technical Conferences and Computers in Engineering Conference.Google ScholarGoogle Scholar
  13. Eberly, D. H. 2003. Game Physics. Elsevier Science Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fletcher, R. 1987. Practical Methods of Optimization; (2Nd Ed.). Wiley-Interscience, New York, NY, USA. Google ScholarGoogle ScholarCross RefCross Ref
  15. Furuta, Y., Mitani, J., Igarashi, T., and Fukui, Y. 2010. Kinetic art design system comprising rigid body simulation. Computer-Aided Design and Applications 7, 4, 533--546.Google ScholarGoogle ScholarCross RefCross Ref
  16. Gajamohan, M., Merz, M., Thommen, I., and D'Andrea, R. 2012. The Cubli: A cube that can jump up and balance. In Proc. IROS, IEEE, 3722--3727.Google ScholarGoogle ScholarCross RefCross Ref
  17. Goldstein, H., Poole, C., and Safko, J. 2001. Classical Mechanics, 3rd ed. Addison Wesley.Google ScholarGoogle Scholar
  18. Gould, D. 1975. The Top: Universal Toy Enduring Pastime. Bailey Brothers and Swinfen Ltd.Google ScholarGoogle Scholar
  19. Hirose, M., Mitani, J., Kanamori, Y., and Fukui, Y. 2011. An interactive design system for sphericon-based geometric toys using conical voxels. In Proc. International Conference on Smart Graphics, 37--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hullin, M. B., Ihrke, I., Heidrich, W., Weyrich, T., Damberg, G., and Fuchs, M. 2013. Computational fabrication and display of material appearance. In Eurographics State-of-the-Art Reports (STAR), 17 pages.Google ScholarGoogle Scholar
  21. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78:1--78:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. 2012. Fast automatic skinning transformations. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 31, 4, 77:1--77:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kang, Z., Wang, X., and Wang, R. 2009. Topology optimization of space vehicle structures considering attitude control effort. Finite Elements in Analysis and Design 45, 431--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. König, O., and Wintermantel, M., 2004. CAD-based evolutionary design optimization with CATIA V5. 1st Weimar Optimization and Stochastic Days.Google ScholarGoogle Scholar
  25. Lewis, D., Ratiu, T., Simo, J. C., and Marsden, J. E. 1992. The heavy top: a geometric treatment. Nonlinearity 5, 1, 1.Google ScholarGoogle ScholarCross RefCross Ref
  26. Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: partitioning models into 3D-printable parts. ACM Trans. Graph. 31, 6, 129:1--129:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Macchietto, A., Zordan, V., and Shelton, C. R. 2009. Momentum control for balance. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Malko, G. 1978. The One and Only Yo-Yo Book. Avon.Google ScholarGoogle Scholar
  29. Nocedal, J., and Wright, S. J. 2000. Numerical Optimization. Springer.Google ScholarGoogle Scholar
  30. Perry, J. 1957. Spinning Tops and Gyroscopic Motion. Dover Publications.Google ScholarGoogle Scholar
  31. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make It Stand: Balancing shapes for 3D fabrication. ACM Trans. Graph. 32, 4, 81:1--81:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Proos, K., Steven, G., Querin, O., and Xie, Y. 2001. Stiffness and inertia multicriteria evolutionary structural optimisation. Engineering Computations 18, 7, 1031--1054.Google ScholarGoogle ScholarCross RefCross Ref
  33. Provatidis, C. G. 2012. Revisiting the spinning top. International Journal of Material and Mechanical Engineering (IJMME) 1, 4, 71--88.Google ScholarGoogle Scholar
  34. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4, 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proc. Symposium on Geometry Processing, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM Trans. Graph. 31, 4, 48:1--48:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Umetani, N., and Schmidt, R. 2013. Cross-sectional structural analysis for 3D printing optimization. In SIGGRAPH Asia 2013 Technical Briefs, 5:1--5:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Vidimče, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 4, 136:1--136:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3D objects with skin-frame structures. ACM Trans. Graph. 32, 6, 177:1--177:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zhou, Q., Panetta, J., and Zorin, D. 2013. Worst-case structural analysis. ACM Trans. Graph. 32, 4, 137:1--137:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zhou, Y., Sueda, S., Matusik, W., and Shamir, A. 2014. Boxelization: Folding 3d objects into boxes. ACM Trans. Graph. 33, 4 (Jul), (to appear). Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Trans. Graph. 31, 6, 127. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Spin-it: optimizing moment of inertia for spinnable objects

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 33, Issue 4
          July 2014
          1366 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2601097
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2014
          Published in tog Volume 33, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader