skip to main content
research-article

Chopper: partitioning models into 3D-printable parts

Published:01 November 2012Publication History
Skip Abstract Section

Abstract

3D printing technology is rapidly maturing and becoming ubiquitous. One of the remaining obstacles to wide-scale adoption is that the object to be printed must fit into the working volume of the 3D printer. We propose a framework, called Chopper, to decompose a large 3D object into smaller parts so that each part fits into the printing volume. These parts can then be assembled to form the original object. We formulate a number of desirable criteria for the partition, including assemblability, having few components, unobtrusiveness of the seams, and structural soundness. Chopper optimizes these criteria and generates a partition either automatically or with user guidance. Our prototype outputs the final decomposed parts with customized connectors on the interfaces. We demonstrate the effectiveness of Chopper on a variety of non-trivial real-world objects.

Skip Supplemental Material Section

Supplemental Material

References

  1. Agrawala, M., Phan, D., Heiser, J., Haymaker, J., Klingner, J., Hanrahan, P., and Tversky, B. 2003. Designing effective step-by-step assembly instructions. ACM Trans. Graphics (Proc. SIGGRAPH) 22, 3, 828--837. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alexander, P., Allen, S., and Dutta, D. 1998. Part orientation and build cost determination in layered manufacturing. Computer-aided Design 30, 5, 343--356.Google ScholarGoogle ScholarCross RefCross Ref
  3. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., and Tal, A. 2006. Mesh segmentation - a comparative study. In Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006, 7--. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Aupperle, L., Conn, H., Keil, J., and O'Rourke, J. 1988. Covering orthogonal polygons with squares. In Proc. Communication, Control and Computing, 97--106.Google ScholarGoogle Scholar
  5. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graphics (Proc. SIGGRAPH) 29, 3, 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chazelle, B. 1981. Convex decompositions of polyhedra. In Proc. ACM Symposium on Theory of Computing, 70--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D mesh segmentation. ACM Trans. Graphics (Proc. SIGGRAPH) 28, 3, 73:1--73:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dickinson, J., and Knopf, G. 1998. Serial packing of arbitrary 3D objects for optimizing layered manufacturing. In Proc. SPIE, vol. 3522, 130--138.Google ScholarGoogle Scholar
  9. Egeblad, J., Nielsen, B. K., and Brazil, M. 2009. Translational packing of arbitrary polytopes. Computational Geometry 42, 4, 269--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fuchs, H., Kedem, Z. M., and Naylor, B. F. 1980. On visible surface generation by a priori tree structures. In Computer Graphics (Proc. SIGGRAPH), vol. 14, 124--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hao, J., Fang, L., and Williams, R. 2011. An efficient curvature-based partitioning of large-scale stl models. Rapid Prototyping Journal 17, 2, 116--127.Google ScholarGoogle ScholarCross RefCross Ref
  12. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graphics (Proc. SIGGRAPH) 29, 3, 61:1--61:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hildebrand, K., Bickel, B., and Alexa, M. 2012. crdbrd: Shape fabrication by sliding planar slices. In Computer Graphics Forum (Proc. Eurographics), vol. 31, 583--592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ikonen, I., Biles, W., Lewis, J., Kumar, A., and Ragade, R. 1998. GARP: Genetic algorithm for part packing in a rapid prototyping machine. In Proc. SPIE, vol. 3517, 54.Google ScholarGoogle Scholar
  15. Januszewski, J. 2009. A note on covering a square of side length 2 + ε. American Mathematical Monthly 116, 2, 174--178.Google ScholarGoogle Scholar
  16. Kirkpatrick, S., Gelatt Jr, C., Vecchi, M., and McCoy, A. 1983. Optimization by simulated annealing. Science 220, 4598, 671--679.Google ScholarGoogle Scholar
  17. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 4, 85:1--85:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lien, J., and Amato, N. 2007. Approximate convex decomposition of polyhedra. In Proc. ACM Symposium on Solid and Physical Modeling, 121--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lowerre, B. T. 1976. The harpy speech recognition system. PhD thesis, Carnegie Mellon University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. McCrae, J., Singh, K., and Mitra, N. J. 2011. Slices: A shape-proxy based on planar sections. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 30, 6, 168:1--168:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Medellin, H., Lim, T., Corney, J., Ritchie, J., and Davies, J. 2007. Automatic subdivision and refinement of large components for rapid prototyping production. Journal of Computing and Information Science in Engineering 7, 3, 249--258.Google ScholarGoogle ScholarCross RefCross Ref
  22. Mori, Y., and Igarashi, T. 2007. Plushie: An interactive design system for plush toys. ACM Trans. Graphics (Proc. SIGGRAPH) 26, 3, 45:1--45:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Saul, G., Lau, M., Mitani, J., and Igarashi, T. 2011. SketchChair: An all-in-one chair design system for end users. In Tangible, Embedded, and Embodied Interaction, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Shamir, A. 2008. A survey on mesh segmentation techniques. Computer Graphics Forum 27, 6, 1539--1556.Google ScholarGoogle ScholarCross RefCross Ref
  25. Shewchuk, J. R. 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In Applied Computational Geometry: Towards Geometric Engineering. 203--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Shewchuk, J. 1998. Tetrahedral mesh generation by Delaunay refinement. In Proc. Symposium on Computational Geometry, 86--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Soifer, A. 2006. Covering a square of side n + ε with unit squares. Journal of Combinatorial Theory A 113, 2, 380--383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Stava, O., Vanek, J., Benes, B., Carr, N., and Mech, R. 2012. Stress relief: Improving structural strength of 3d printable objects. ACM Trans. Graphics (Proc. SIGGRAPH) 31, 4, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Thrimurthulu, K., Pandey, P. M., and Reddy, N. V. 2004. Optimum part deposition orientation in fused deposition modeling. Machine Tools and Manufacture 44, 6, 585--594.Google ScholarGoogle ScholarCross RefCross Ref
  30. Toussaint, G. 1983. Solving geometric problems with the rotating calipers. In Proc. IEEE Melecon, vol. 83, A10.Google ScholarGoogle Scholar
  31. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment editing and modeling. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 4, 90:1--90:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Whiting, E., Ochsendorf, J., and Durand, F. 2009. Procedural modeling of structurally-sound masonry buildings. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 28, 5, 112:1--112:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Xin, S., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., and Cohen-Or, D. 2011. Making burr puzzles from 3D models. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 4, 97:1--97:8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Chopper: partitioning models into 3D-printable parts

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 31, Issue 6
        November 2012
        794 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2366145
        Issue’s Table of Contents

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 November 2012
        Published in tog Volume 31, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader