skip to main content
research-article

Build-to-last: strength to weight 3D printed objects

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

The emergence of low-cost 3D printers steers the investigation of new geometric problems that control the quality of the fabricated object. In this paper, we present a method to reduce the material cost and weight of a given object while providing a durable printed model that is resistant to impact and external forces.

We introduce a hollowing optimization algorithm based on the concept of honeycomb-cells structure. Honeycombs structures are known to be of minimal material cost while providing strength in tension. We utilize the Voronoi diagram to compute irregular honeycomb-like volume tessellations which define the inner structure. We formulate our problem as a strength--to--weight optimization and cast it as mutually finding an optimal interior tessellation and its maximal hollowing subject to relieve the interior stress. Thus, our system allows to build-to-last 3D printed objects with large control over their strength-to-weight ratio and easily model various interior structures. We demonstrate our method on a collection of 3D objects from different categories. Furthermore, we evaluate our method by printing our hollowed models and measure their stress and weights.

Skip Supplemental Material Section

Supplemental Material

a97-sidebyside.mp4

mp4

19.3 MB

References

  1. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. 31, 4 (July), 47:1--47:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M. H., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bickel, B., Kaufmann, P., Skouras, M., Thomaszewski, B., Bradley, D., Beeler, T., Jackson, P., Marschner, S., Matusik, W., and Gross, M. 2012. Physical face cloning. ACM Trans. Graph. 31, 4 (July), 118:1--118:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bronstein, A., Bronstein, M., and Kimmel, R. 2008. Numerical Geometry of Non-Rigid Shapes, 1 ed. Springer Publishing Company, Incorporated. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3D-printing of non-assembly, articulated models. ACM Trans. Graph. 31, 6 (Nov.), 130:1--130:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. 32, 6, 186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2fab: A reducer-tuner model for translating specifications to 3D prints. ACM Trans. Graph. 32, 4, 135:1--135:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Trans. Graph. 32, 4 (July), 83:1--83:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Crapo, H., and Whiteley, W. 1993. The geometry of rigid structures. Encyclopedia of Math., Cambridge University Press.Google ScholarGoogle Scholar
  10. Crapo, H. 1979. Structural rigidity. Structural Topology 1, 26--45.Google ScholarGoogle Scholar
  11. Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal voronoi tessellations: Applications and algorithms. SIAM Review 41, 4, 637--676. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Haftka, R. T., and Grandhi, R. V. 1986. Structural shape optimization - a survey. Computer Methods in Applied Mechanics and Engineering 57, 1, 91--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hollister, S. 2005. Porous scaffold design for tissue engineering. Nat. Mater. 4, 7, 518--524.Google ScholarGoogle ScholarCross RefCross Ref
  14. Khoda, A., Ozbolat, I. T., and Koc, B. 2013. Designing heterogeneous porous tissue scaffolds for additive manufacturing processes. Computer-Aided Design 45, 12, 1507--1523. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kindinger, J. 2001. Lightweight structural core. ASM Handbook 21, 180--183.Google ScholarGoogle Scholar
  16. Kou, X., and Tan, S. 2010. A simple and effective geometric representation for irregular porous structure modeling. Computer-Aided Design 42, 10, 930--941. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Li, X., Guo, X., Wang, H., He, Y., Gu, X., and Qin, H. 2007. Harmonic volumetric mapping for solid modeling applications. In Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling, ACM, New York, NY, USA, SPM '07, 109--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Li, H., Vouga, E., Gudym, A., Luo, L., Barron, J. T., and Gusev, G. 2013. 3D self-portraits. ACM Trans. Graph. 32, 6 (November). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lloyd, S. P. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 2, 129--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Patzak, B., and Rypl, D. 2012. Object-oriented, parallel finite element framework with dynamic load balancing. Adv. Eng. Softw., 35--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pottmann, H. 2012. Freeform architecture and fabrication-aware design. Computers & Graphics 36, 5 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: balancing shapes for 3D fabrication. ACM Trans. Graph. 32, 4 (July), 81:1--81:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rivers, A., Moyer, I. E., and Durand, F. 2012. Position-correcting tools for 2d digital fabrication. ACM Trans. Graph. 31, 4 (July), 88:1--88:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rosenberg, I. 1980. Structural rigidity i: Foundations and rigidity criteria. In Combinatorics 79 Part I, M. Deza and I. Rosenberg, Eds., vol. 8 of Annals of Discrete Mathematics. Elsevier, 143--161.Google ScholarGoogle Scholar
  25. Schroeder, C., Regli, W. C., Shokoufandeh, A., and Sun, W. 2005. Computer-aided design of porous artifacts. Computer-Aided Design 37, 3, 339--353.Google ScholarGoogle ScholarCross RefCross Ref
  26. Si, H., 2007. Tetgen. a quality tetrahedral mesh generator.Google ScholarGoogle Scholar
  27. Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. Comp. Graph. Forum 31, 2pt4 (May), 835--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4 (July), 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3D printable objects. ACM Trans. Graph. 31, 4 (July), 48:1--48:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Telea, A., and Jalba, A. 2011. Voxel-based assessment of printability of 3D shapes. In Proceedings of the 10th international conference on Mathematical morphology and its applications to image and signal processing, Springer-Verlag, ISMM'11, 393--404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Umetani, N., and Schmidt, R. 2013. Cross-sectional structural analysis for 3d printing optimization. In SIGGRAPH Asia 2013 Technical Briefs, ACM, New York, NY, USA, SA '13, 5:1--5:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Vidimče, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. Openfab: a programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 4 (July), 136:1--136:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Voronoi, G. 1908. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les p arallélloèdres primitifs. Journal für die reine und angewandte Mathematik (Crelles Journal) 1908, 134 (Jan.), 198--287.Google ScholarGoogle Scholar
  34. Wang, W., Wang, T. Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., and Liu, X. 2013. Cost-effective printing of 3D objects with skin-frame structures. ACM Trans. Graph. 32, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wicke, M., Botsch, M., and Gross, M. 2007. A finite element method on convex polyhedra. Comp. Graph. Forum 26, 3, 355--364.Google ScholarGoogle ScholarCross RefCross Ref
  36. Wilson, S. 1990. A new face of aerospace honeycomb. Materials & Design 11, 6, 323--326.Google ScholarGoogle ScholarCross RefCross Ref
  37. Yan, D.-M., Wang, W., Lévy, B., and Liu, Y. 2013. Efficient computation of clipped voronoi diagram for mesh generation. Computer-Aided Design 45, 4, 843--852. Geometric Modeling and Processing 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zhou, Q., Panetta, J., and Zorin, D. 2013. Worst-case structural analysis. ACM Trans. Graph. 32, 4 (July), 137:1--137:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Trans. Graph. 31, 6 (Nov.), 127:1--127:10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Build-to-last: strength to weight 3D printed objects

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 33, Issue 4
        July 2014
        1366 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2601097
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2014
        Published in tog Volume 33, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader