skip to main content
research-article

Lightweight eye capture using a parametric model

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

Facial scanning has become ubiquitous in digital media, but so far most efforts have focused on reconstructing the skin. Eye reconstruction, on the other hand, has received only little attention, and the current state-of-the-art method is cumbersome for the actor, time-consuming, and requires carefully setup and calibrated hardware. These constraints currently make eye capture impractical for general use. We present the first approach for high-quality lightweight eye capture, which leverages a database of pre-captured eyes to guide the reconstruction of new eyes from much less constrained inputs, such as traditional single-shot face scanners or even a single photo from the internet. This is accomplished with a new parametric model of the eye built from the database, and a novel image-based model fitting algorithm. Our method provides both automatic reconstructions of real eyes, as well as artistic control over the parameters to generate user-specific eyes.

Skip Supplemental Material Section

Supplemental Material

References

  1. Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: reconstruction and parameterization from range scans. In ACM Transactions on Graphics (TOG), vol. 22, ACM, 587--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Amberg, B., Romdhani, S., and Vetter, T. 2007. Optimal step nonrigid icp algorithms for surface registration. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, IEEE, 1-8.Google ScholarGoogle Scholar
  3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: shape completion and animation of people. In ACM Transactions on Graphics (TOG), vol. 24, ACM, 408-416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Beeler, T., Bickel, B., Sumner, R., Beardsley, P., and Gross, M. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graphics (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C, Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 4, 75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bérard, P., Bradley, D., Nitti, M., Beeler, T., and Gross, M. 2014. High-quality capture of eyes. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 33, 6, 223:1--223:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3d faces. In Proc. of the 26th annual conference on Computer graphics and interactive techniques, 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Boykov, Y., and Kolmogorov, V. 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on 26, 9, 1124--1137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bradley, D., Heidrich, W., Popa, T., and Sheffer, A. 2010. High resolution passive facial performance capture. ACM Trans. Graphics (Proc. SIGGRAPH) 29, 4, 41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Brown, B. J., and Rusinkiewicz, S. 2004. Non-rigid range-scan alignment using thin-plate splines. In 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium on, IEEE, 759--765. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cao, C., Hou, Q., and Zhou, K. 2014. Displaced dynamic expression regression for real-time facial tracking and animation. ACM Transactions on Graphics (TOG) 33, 4, 43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chen, K., Johan, H., and Mueller-Wittig, W. 2013. Simple and efficient example-based texture synthesis using tiling and deformation. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, 145--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Efros, A. A., and Freeman, W. T. 2001. Image quilting for texture synthesis and transfer. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, 341--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Flickr. 2006. Mohammed Alnaser - Mr. Falcon. Creative Commons - Attribution 2.0. https://www.flickr.com/photos/69er/324313066.Google ScholarGoogle Scholar
  15. Francois G. Gautron P. Breton G. and Bouatouch K. 2009. Image-based modeling of the human eye. IEEE TVCG 15, 5, 815--827. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Funkhouser T. Kazhdan M. Shilane P. Min P. Kiefer W. Tal A. Rusinkiewicz S. and Dobkin D. 2004. Modeling by example. In ACM Transactions on Graphics (TOG), vol. 23, ACM, 652--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fyffe G. Hawkins T. Watts C. Ma W.-C. and Debevec P. 2011. Comprehensive facial performance capture. In Eurographics.Google ScholarGoogle Scholar
  18. Fyffe, G., Jones, A., Alexander, O., Ichikari, R., and Debevec, P. 2014. Driving high-resolution facial scans with video performance capture. ACM Trans. Graphics 34, 1, 8:1--8:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Garrido, P., Valgaerts, L., Wu, C., and Theobalt, C. 2013. Reconstructing detailed dynamic face geometry from monocular video. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 32, 6, 158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu, X., and Debevec, P. 2011. Multiview face capture using polarized spherical gradient illumination. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 30, 6, 129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Guo, B., Liang, L., Liu, C., Shum, H.-Y., and Xu, Y. 2001. Real-time texture synthesis by patch-based sampling.Google ScholarGoogle Scholar
  22. Haehnel, D., Thrun, S., and Burgard, W. 2003. An extension of the icp algorithm for modeling nonrigid objects with mobile robots. In IJCAI, vol. 3, 915--920. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ikemoto, L., Gelfand, N., and Levoy, M. 2003. A hierarchical method for aligning warped meshes. In 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings. Fourth International Conference on, IEEE, 434--441.Google ScholarGoogle Scholar
  24. Jacob, M., and Unser, M. 2004. Design of steerable filters for feature detection using canny-like criteria. Pattern Analysis and Machine Intelligence, IEEE Transactions on 26, 8, 1007--1019. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Shape matching and anisotropy. In ACM Transactions on Graphics (TOG), vol. 23, ACM, 623--629. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. 2003. Graphcut textures: image and video synthesis using graph cuts. In ACM Transactions on Graphics (ToG), vol. 22, ACM, 277--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lefohn, A., Budge, B., Shirley, P., Caruso, R., and Reinhard, E. 2003. An ocularist's approach to human iris synthesis. IEEE CG&A 23, 6, 70--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Li, H., Sumner, R. W., and Pauly, M. 2008. Global correspondence optimization for non-rigid registration of depth scans. In Computer graphics forum, vol. 27, Wiley Online Library, 1421--1430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Li, J., Xu, W., Cheng, Z., Xu, K., and Klein, R. 2015. Lightweight wrinkle synthesis for 3d facial modeling and animation. Computer-Aided Design 58, 117--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Proc. Rendering Techniques, 183--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Mohammed, U., Prince, S. J., and Kautz, J. 2009. Visiolization: generating novel facial images. ACM Transactions on Graphics (TOG) 28, 3, 57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Palubicki, W., Horel, K., Longay, S., Runions, A., Lane, B., Měch, R., and Prusinkiewicz, P. 2009. Self-organizing tree models for image synthesis. In ACM Transactions on Graphics (TOG), vol. 28, ACM, 58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. In ACM Transactions on Graphics (TOG), vol. 22, ACM, 313--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Praun, E., Finkelstein, A., and Hoppe, H. 2000. Lapped textures. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 465--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ramanarayanan, G., and Bala, K. 2007. Constrained texture synthesis via energy minimization. IEEE TVCG 13, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Rozenberg, G., and Salomaa, A. 1976. The mathematical theory of L systems. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ruhland, K., Andrist, S., Badler, J., Peters, C., Badler, N., Gleicher, M., Mutlu, B., and McDonnell, R. 2014. Look me in the eyes: A survey of eye and gaze animation for virtual agents and artificial systems. In Eurographics State of the Art Reports, 69--91.Google ScholarGoogle Scholar
  38. Sagar, M. A., Bullivant, D., Mallinson, G. D., and Hunter, P. J. 1994. A virtual environment and model of the eye for surgical simulation. In Proceedings of Computer Graphics and Interactive Techniques, 205--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Shen, H.-L., and Cai, Q.-Y. 2009. Simple and efficient method for specularity removal in an image. Applied optics 48, 14, 2711--2719.Google ScholarGoogle Scholar
  40. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, ACM, 175--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Suwajanakorn, S., Kemelmacher-Shlizerman, I., and Seitz, S. M. 2014. Total moving face reconstruction. In Computer Vision--ECCV 2014. Springer, 796--812.Google ScholarGoogle Scholar
  42. Tai, Y.-W., Liu, S., Brown, M. S., and Lin, S. 2010. Super resolution using edge prior and single image detail synthesis. In CVPR.Google ScholarGoogle Scholar
  43. Valgaerts, L., Wu, C., Bruhn, A., Seidel, H.-P., and Theobalt, C. 2012. Lightweight binocular facial performance capture under uncontrolled lighting. ACM Trans. Graph. 31, 6, 187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Vlasic, D., Brand, M., Pfister, H., and Popović, J. 2005. Face transfer with multilinear models. In ACM Transactions on Graphics (TOG), vol. 24, ACM, 426--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. 2009. State of the art in example-based texture synthesis. In Eurographics 2009, State of the Art Report, EG-STAR, Eurographics Association, 93--117.Google ScholarGoogle Scholar
  46. Wikimedia Commons. 1485. Sandro Botticelli - The Birth of the Venus. Public Domain. https://commons.wikimedia.org/wiki/File:Venus_botticelli_detail.jpg.Google ScholarGoogle Scholar
  47. Wikimedia Commons. 1887. Vincent Van Gogh - Self-Portrait. Public Domain. https://commons.wikimedia.org/wiki/File:VanGogh_1887_Selbstbildnis.jpg.Google ScholarGoogle Scholar
  48. Wikimedia Commons. 2006. Blue Eye Image. GNU Free Documentation License Version 1.2. https://commons.wikimedia.org/wiki/File:Blueye.JPG.Google ScholarGoogle Scholar

Index Terms

  1. Lightweight eye capture using a parametric model

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 4
        July 2016
        1396 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2897824
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 July 2016
        Published in tog Volume 35, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader