skip to main content
research-article

High-quality capture of eyes

Published:19 November 2014Publication History
Skip Abstract Section

Abstract

Even though the human eye is one of the central features of individual appearance, its shape has so far been mostly approximated in our community with gross simplifications. In this paper we demonstrate that there is a lot of individuality to every eye, a fact that common practices for 3D eye generation do not consider. To faithfully reproduce all the intricacies of the human eye we propose a novel capture system that is capable of accurately reconstructing all the visible parts of the eye: the white sclera, the transparent cornea and the non-rigidly deforming colored iris. These components exhibit very different appearance properties and thus we propose a hybrid reconstruction method that addresses them individually, resulting in a complete model of both spatio-temporal shape and texture at an unprecedented level of detail, enabling the creation of more believable digital humans. Finally, we believe that the findings of this paper will alter our community's current assumptions regarding human eyes, and our work has the potential to significantly impact the way that eyes will be modelled in the future.

Skip Supplemental Material Section

Supplemental Material

References

  1. Alexander, O., Rogers, M., Lambeth, W., Chiang, J.-Y., Ma, W.-C., Wang, C.-C., and Debevec, P. 2010. The digital emily project: Achieving a photorealistic digital actor. IEEE CG&A 30, 4, 20--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ares, M., and Royo, S. 2006. Comparison of cubic b-spline and zernike-fitting techniques in complex wavefront reconstruction. Applied optics 45, 27, 6954--6964.Google ScholarGoogle Scholar
  3. Atcheson, B., Heide, F., and Heidrich, W. 2010. CAL-Tag: High precision fiducial markers for camera calibration. In International Workshop on Vision, Modeling and Visualization.Google ScholarGoogle Scholar
  4. Atchison, D. A., Jones, C. E., Schmid, K. L., Pritchard, N., Pope, J. M., Strugnell, W. E., and Riley, R. A. 2004. Eye shape in emmetropia and myopia. Investigative Ophthalmology & Visual Science 45, 10, 3380--3386.Google ScholarGoogle ScholarCross RefCross Ref
  5. Beeler, T., Bickel, B., Sumner, R., Beardsley, P., and Gross, M. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graphics (Proc. SIGGRAPH) 29, 40:1--40:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 4, 75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Beeler, T., Bickel, B., Noris, G., Beardsley, P., Marschner, S., Sumner, R. W., and Gross, M. 2012. Coupled 3D reconstruction of sparse facial hair and skin. ACM Trans. Graphics (Proc. SIGGRAPH) 31, 4, 117:1--117:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE Trans. on PAMI 14, 2, 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3d faces. In Proc. of the 26th annual conference on Computer graphics and interactive techniques, 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bradley, D., Heidrich, W., Popa, T., and Sheffer, A. 2010. High resolution passive facial performance capture. ACM Trans. Graphics (Proc. SIGGRAPH) 29, 4, 41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. 2004. High accuracy optical flow estimation based on a theory for warping. In ECCV. Springer, 25--36.Google ScholarGoogle Scholar
  12. Eagle Jr, R. 1988. Iris pigmentation and pigmented lesions: an ultrastructural study. Trans. of the American Ophthalmological Society 86, 581.Google ScholarGoogle Scholar
  13. Efros, A. A., and Leung, T. K. 1999. Texture synthesis by non-parametric sampling. In IEEE ICCV, 1033--1038. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. François, G., Gautron, P., Breton, G., and Bouatouch, K. 2009. Image-based modeling of the human eye. IEEE TVCG 15, 5, 815--827. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Garrido, P., Valgaerts, L., Wu, C., and Theobalt, C. 2013. Reconstructing detailed dynamic face geometry from monocular video. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 32, 6, 158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu, X., and Debevec, P. 2011. Multiview face capture using polarized spherical gradient illumination. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 30, 6, 129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Graham, P., Tunwattanapong, B., Busch, J., Yu, X., Jones, A., Debevec, P., and Ghosh, A. 2013. Measurement-based synthesis of facial microgeometry. In Computer Graphics Forum, vol. 32, 335--344.Google ScholarGoogle ScholarCross RefCross Ref
  18. Hachol, A., Szczepanowska-Nowak, W., Kasprzak, H., Zawojska, I., Dudzinski, A., Kinasz, R., and Wygledowska-Promienska, D. 2007. Measurement of pupil reactivity using fast pupillometry. Physiological measurement 28, 1, 61.Google ScholarGoogle Scholar
  19. Halstead, M. A., Barsky, B. A., Klein, S. A., and Mandell, R. B. 1996. Reconstructing curved surfaces from specular reflection patterns using spline surface fitting of normals. In Proceedings of Computer graphics and interactive techniques, 335--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Haralick, R. M. 1979. Statistical and structural approaches to texture. Proc. IEEE 67, 5, 786--804.Google ScholarGoogle ScholarCross RefCross Ref
  21. Hernández, C., Vogiatzis, G., and Cipolla, R. 2008. Multiview photometric stereo. IEEE PAMI 30, 3, 548--554. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A., et al. 1991. Optical coherence tomography. Science 254, 5035, 1178--1181.Google ScholarGoogle Scholar
  23. Ihrke, I., Kutulakos, K. N., Lensch, H. P., Magnor, M., and Heidrich, W. 2008. State of the art in transparent and specular object reconstruction. In Eurographics 2008 - State of the Art Reports.Google ScholarGoogle Scholar
  24. Lam, M. W. Y., and Baranoski, G. V. G. 2006. A predictive light transport model for the human iris. In Computer Graphics Forum, vol. 25, 359--368.Google ScholarGoogle ScholarCross RefCross Ref
  25. Lefohn, A., Budge, B., Shirley, P., Caruso, R., And Reinhard, E. 2003. An ocularist's approach to human iris synthesis. IEEE CG&A 23, 6, 70--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Proc. Rendering Techniques, 183--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pamplona, V. F., Oliveira, M. M., and Baranoski, G. V. 2009. Photorealistic models for pupil light reflex and iridal pattern deformation. ACM Trans. Graphics (TOG) 28, 4, 106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Piñero, D. P. 2013. Technologies for anatomical and geometric characterization of the corneal structure and anterior segment: a review. In Seminars in Ophthalmology, no. 0, 1--10.Google ScholarGoogle Scholar
  29. Rio-Cristobal, A., and Martin, R. 2014. Corneal assessment technologies: Current status. Survey of Ophthalmology.Google ScholarGoogle Scholar
  30. Ruhland, K., Andrist, S., Badler, J., Peters, C., Badler, N., Gleicher, M., Mutlu, B., and McDonnell, R. 2014. Look me in the eyes: A survey of eye and gaze animation for virtual agents and artificial systems. In Eurographics State of the Art Reports, 69--91.Google ScholarGoogle Scholar
  31. Sagar, M. A., Bullivant, D., Mallinson, G. D., and Hunter, P. J. 1994. A virtual environment and model of the eye for surgical simulation. In Proceedings of Computer Graphics and Interactive Techniques, 205--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. 2006. A comparison and evaluation of multi-view stereo reconstruction algorithms. In IEEE CVPR, vol. 1, 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Smolek, M. K., and Klyce, S. D. 2003. Zernike polynomial fitting fails to represent all visually significant corneal aberrations. Investigative ophthalmology & visual science 44, 11, 4676--4681.Google ScholarGoogle Scholar
  34. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proc. SGP, 175--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Vivino, M., Chintalagiri, S., Trus, B., and Datiles, M. 1993. Development of a scheimpflug slit lamp camera system for quantitative densitometric analysis. Eye 7, 6, 791--798.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. High-quality capture of eyes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 33, Issue 6
          November 2014
          704 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2661229
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 November 2014
          Published in tog Volume 33, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader