skip to main content
research-article

Dynamic hair capture using spacetime optimization

Published:19 November 2014Publication History
Skip Abstract Section

Abstract

Dynamic hair strands have complex structures and experience intricate collisions and occlusion, posing significant challenges for high-quality reconstruction of their motions. We present a comprehensive dynamic hair capture system for reconstructing realistic hair motions from multiple synchronized video sequences. To recover hair strands' temporal correspondence, we propose a motion-path analysis algorithm that can robustly track local hair motions in input videos. To ensure the spatial and temporal coherence of the dynamic capture, we formulate the global hair reconstruction as a spacetime optimization problem solved iteratively. Demonstrated using a range of real-world hairstyles driven by different wind conditions and head motions, our approach is able to reconstruct complex hair dynamics matching closely with video recordings both in terms of geometry and motion details.

Skip Supplemental Material Section

Supplemental Material

References

  1. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graph. 30 (Aug.), 75:1--75:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Beeler, T., Bickel, B., Noris, G., Beardsley, P., Marschner, S., Sumner, R. W., and Gross, M. 2012. Coupled 3D reconstruction of sparse facial hair and skin. ACM Trans. Graph. 31, 4, 117:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., and Gross, M. 2007. Multi-scale capture of facial geometry and motion. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bolles, R. C., Baker, H. H., and Marimont, D. H. 1987. Epipolar-plane image analysis: An approach to determining structure from motion. International Journal of Computer Vision 1, 7--55.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bonneel, N., Paris, S., Panne, M. V. D., Durand, F., and Drettakis, G. 2009. Single photo estimation of hair appearance. Computer Graphics Forum 28, 1171--1180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bradley, D., Popa, T., Sheffer, A., Heidrich, W., and Boubekeur, T. 2008. Markerless garment capture. ACM Trans. Graph. 27, 3 (Aug.), 99:1--99:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bradley, D., Heidrich, W., Popa, T., and Sheffer, A. 2010. High resolution passive facial performance capture. ACM Trans. on Graphics (Proc. SIGGRAPH) 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bradski, G. 2000. The OpenCV Library. Dr. Dobb's Journal of Software Tools.Google ScholarGoogle Scholar
  9. Cai, M., Zheng, C., and Zhou, K. 2014. A reduced model for interactive hairs. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chai, M., Wang, L., Yu, Y., Weng, Y., Guo, B., and Zhou, K. 2012. Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4, 116:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chai, M., Wang, L., Weng, Y., Jin, X., and Zhou, K. 2013. Dynamic hair manipulation in images and videos. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2009. Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math. Softw.. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chen, Q., Li, D., and Tang, C.-K. 2012. KNN matting. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, 869--876. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Davis, T. A., and Hager, W. W. 2009. Dynamic supernodes in sparse cholesky update/downdate and triangular solves. ACM Trans. Math. Softw. 35, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., and Thrun, S. 2008. Performance capture from sparse multi-view video. ACM Trans. Graph. 27, 3 (Aug.), 98:1--98:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fu, H., Wei, Y., Tai, C.-L., and Quan, L. 2007. Sketching hairstyles. In Proc. EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling, 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Furukawa, Y., and Ponce, J. 2010. Accurate, dense, and robust multiview stereopsis. IEEE Trans. PAMI 32, 8, 1362--1376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Grabli, S., Sillion, F., Marschner, S., and Lengyel, J. E. 2002. Image-based hair capture by inverse lighting. In Proc. Graphics Interface.Google ScholarGoogle Scholar
  19. Gregson, J., Krimerman, M., Hullin, M. B., and Heidrich, W. 2012. Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Trans. Graph. 31, 4 (July), 52:1--52:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Herrera, T. L., Zinke, A., and Weber, A. 2012. Lighting hair from the inside: A thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6, 146:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hu, L., Ma, C., Luo, L., and Li, H. 2014. Robust hair capture using simulated examples. ACM Trans. Graph.. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ihrke, I., and Magnor, M. 2004. Image-based tomographic reconstruction of flames. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '04, 365--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ishikawa, T., Kazama, Y., Sugisaki, E., and Morishima, S. 2007. Hair motion reconstruction using motion capture system. ACM SIGGRAPH 2007 posters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jakob, W., Moon, J. T., and Marschner, S. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kim, C., Zimme R, H., Pritch, Y., Sorkine-Hornung, A., and Gross, M. 2013. Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Graph. 32, 4, 73:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kong, W., Takahashi, H., and Nakajima, M. 1997. Generation of 3D hair model from multiple pictures. In Proc. Multimedia Modeling.Google ScholarGoogle Scholar
  27. Li, Y., Fan, X., Mitra, N. J., Chamovitz, D., Cohen-Or, D., and Chen, B. 2013. Analyzing growing plants from 4D point cloud data. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2013) 32, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Luo, L., Li, H., Weise, T., Paris, S., Pauly, M., and Rusinkiewicz, S. 2011. Dynamic hair capture. Tech. rep., Princeton University.Google ScholarGoogle Scholar
  29. Luo, L., Li, H., and Rusinkiewicz, S. 2013. Structure-aware hair capture. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Luo, L., Zhang, C., Zhang, Z., and Rusinkiewicz, S. 2013. Wide-baseline hair capture using strand-based refinement. Computer Vision and Pattern Recognition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. McLachlan, G. J., and Krishnan, T. 1997. The EM algorithm and extensions. In Wiley series in probability and statistics. John Wiley & Sons.Google ScholarGoogle Scholar
  32. Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007. Position based dynamics. Journal of Visual Communication and Image Representation 18, 2, 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Paris, S., Briceño, H., and Sillion, F. 2004. Capture of hair geometry from multiple images. ACM Trans. Graph. 23, 3, 712--719. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Paris, S., Chang, W., Kozhushnyan, O. I., Jarosz, W., Matusik, W., Zwicker, M., and Durand, F. 2008. Hair photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3, 30:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Roessl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Vlasic, D., Baran, I., Matusik, W., and Popović, J. 2008. Articulated mesh animation from multi-view silhouettes. ACM Trans. Graph. 27, 3 (Aug.), 97:1--97:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wang, H., Liao, M., Zhang, Q., Yang, R., and Turk, G. 2009. Physically guided liquid surface modeling from videos. ACM Trans. Graph. 28, 3 (July), 90:1--90:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wang, L., Yu, Y., Zhou, K., and Guo, B. 2009. Example-based hair geometry synthesis. ACM Trans. Graph. 28, 3, 56:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: styling, simulation, and rendering. IEEE Transactions on Visualization and Computer Graphics 13, 2, 213--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wei, Y., Ofek, E., Quan, L., and Shum, H.-Y. 2005. Modeling hair from multiple views. ACM Trans. Graph. 24, 3, 816--820. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wu, C., Agarwal, S., Curless, B., and Seitz, S. M. 2011. Multicore bundle adjustment. In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yamaguchi, T., Wilburn, B., and Ofek, E. 2009. Video-based modeling of dynamic hair. In the 3rd Pacific Rim Symposium on Advances in Image and Video Technology, 585--596. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Zhang, Q., Tong, J., Wang, H., Pan, Z., and Yang, R. 2012. Simulation guided hair dynamics modeling from video. Computer Graphics Forum 31, 7, 2003--2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Dynamic hair capture using spacetime optimization

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 33, Issue 6
          November 2014
          704 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2661229
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 November 2014
          Published in tog Volume 33, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader