skip to main content
research-article

Capturing braided hairstyles

Published:19 November 2014Publication History
Skip Abstract Section

Abstract

From fishtail to princess braids, these intricately woven structures define an important and popular class of hairstyle, frequently used for digital characters in computer graphics. In addition to the challenges created by the infinite range of styles, existing modeling and capture techniques are particularly constrained by the geometric and topological complexities. We propose a data-driven method to automatically reconstruct braided hairstyles from input data obtained from a single consumer RGB-D camera. Our approach covers the large variation of repetitive braid structures using a family of compact procedural braid models. From these models, we produce a database of braid patches and use a robust random sampling approach for data fitting. We then recover the input braid structures using a multi-label optimization algorithm and synthesize the intertwining hair strands of the braids. We demonstrate that a minimal capture equipment is sufficient to effectively capture a wide range of complex braids with distinct shapes and structures.

Skip Supplemental Material Section

Supplemental Material

References

  1. Artin, E. 1947. Theory of braids. Annals of Mathematics Second Series 48, 1, 101--126.Google ScholarGoogle ScholarCross RefCross Ref
  2. Besl, P., and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE Trans. on PAMI 14, 2, 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bradley, D., Nowrouzezahrai, D., and Beardsley, P. 2013. Image-based reconstruction and synthesis of dense foliage. ACM Trans. Graph. 32, 4, 74:1--74:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chai, M., Wang, L., Weng, Y., Yu, Y., Guo, B., and Zhou, K. 2012. Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4, 116:1--116:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chai, M., Wang, L., Weng, Y., Jin, X., and Zhou, K. 2013. Dynamic hair manipulation in images and videos. ACM Trans. Graph. 32, 4, 75:1--75:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Choe, B., and Ko, H.-S. 2005. A statistical wisp model and pseudophysical approaches for interactive hairstyle generation. IEEE Trans. Vis. Comput. Graph. 11, 2, 160--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Coefield, S. 2013. DIY Braids: From Crowns to Fishtails, Easy, Step-by-Step Hair Braiding Instructions. Adams Media.Google ScholarGoogle Scholar
  8. Delong, A., Osokin, A., Isack, H. N., and Boykov, Y. 2012. Fast approximate energy minimization with label costs. International journal of computer vision 96, 1, 1--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Derouet-Jourdan, A., Bertails-Descoubes, F., Daviet, G., and Thollot, J. 2013. Inverse dynamic hair modeling with frictional contact. ACM Trans. Graph. 32, 6, 159:1--159:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Echevarria, J. I., Bradley, D., Gutierrez, D., and Beeler, T. 2014. Capturing and stylizing hair for 3d fabrication. ACM Trans. Graph. 33, 4, 125:1--125:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fu, H., Wei, Y., Tai, C.-L., and Quan, L. 2007. Sketching hairstyles. In SBIM '07, 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Furukawa, Y., and Ponce, J. 2010. Accurate, dense, and robust multiview stereopsis. IEEE Trans. PAMI 32, 1362--1376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ghoniem, A., and Museth, K. 2013. Hair growth by means of sparse volumetric modeling and advection. In SIGGRAPH '13 Talks, 34:1--34:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Herrera, T. L., Zinke, A., and Weber, A. 2012. Lighting hair from the inside: A thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6, 146:1--146:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hu, L., Ma, C., Luo, L., and Li, H. 2014. Robust hair capture using simulated examples. ACM Trans. Graph. 33, 4, 126:1--126:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Huang, H., Gong, M., Cohen-Or, D., Ouyang, Y., Tan, F., and Zhang, H. 2012. Field-guided registration for feature-conforming shape composition. ACM Trans. Graph. 31, 6, 179:1--179:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li, G., and Chen, B. 2013. L1-medial skeleton of point cloud. ACM Trans. Graph. 32, 4, 65:1--65:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Huang, Q., Guibas, L. J., and Mitra, N. J. 2014. Near-regular structure discovery using linear programming. ACM Trans. Graph. 33, 3, 23:1--23:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jakob, W., Moon, J. T., and Marschner, S. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164:1--164:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kim, Y. M., Mitra, N. J., Yan, D.-M., and Guibas, L. 2012. Acquiring 3d indoor environments with variability and repetition. ACM Trans. Graph. 31, 6, 138:1--138:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kuhn, H. 1955. The hungarian method for the assignment problem. Naval research logistics quarterly 2, 1-2, 83--97.Google ScholarGoogle Scholar
  22. Li, H., Adams, B., Guibas, L. J., and Pauly, M. 2009. Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5, 175:1--175:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Li, G., Liu, L., Zheng, H., and Mitra, N. J. 2010. Analysis, reconstruction and manipulation using arterial snakes. ACM Trans. Graph. 29, 6, 152:1--152:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D., and Mitra, N. J. 2011. Globfit: Consistently fitting primitives by discovering global relations. ACM Trans. Graph. 30, 4, 52:1--52:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Luo, L., Li, H., Paris, S., Weise, T., Pauly, M., and Rusinkiewicz, S. 2012. Multi-view hair capture using orientation fields. In CVPR, 1490--1497. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Luo, L., Li, H., and Rusinkiewicz, S. 2013. Structure-aware hair capture. ACM Trans. Graph. 32, 4, 76:1--76:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mitra, N. J., Wand, M., Zhang, H., Cohen-Or, D., Kim, V., and Huang, Q.-X. 2014. Structure-aware shape processing. In ACM SIGGRAPH 2014 Courses, 13:1--13:21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nan, L., Xie, K., and Sharf, A. 2012. A search-classify approach for cluttered indoor scene understanding. ACM Trans. Graph. 31, 6, 137:1--137:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. 2011. Kinectfusion: Real-time dense surface mapping and tracking. In IEEE ISMAR, IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Paris, S., Chang, W., Kozhushnyan, O. I., Jarosz, W., Matusik, W., Zwicker, M., and Durand, F. 2008. Hair photobooth: Geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3, 30:1--30:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. Graph. 27, 3, 64:1--64:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Shao, T., Xu, W., Zhou, K., Wang, J., Li, D., and Guo, B. 2012. An interactive approach to semantic modeling of indoor scenes with an rgbd camera. ACM Trans. Graph. 31, 6, 136:1--136:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Shen, C.-H., Fu, H., Chen, K., and Hu, S.-M. 2012. Structure recovery by part assembly. ACM Trans. Graph. 31, 6, 180:1--180:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wang, L., Yu, Y., Zhou, K., and Guo, B. 2009. Example-based hair geometry synthesis. ACM Trans. Graph. 28, 3, 56:1--56:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: Styling, simulation, and rendering. IEEE Trans. Vis. Comput. Graph. 13, 2, 213--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wei, Y., Ofek, E., Quan, L., and Shum, H.-Y. 2005. Modeling hair from multiple views. ACM Trans. Graph. 24, 3, 816--820. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wither, J., Bertails, F., and Cani, M.-P. 2007. Realistic hair from a sketch. In SMI '07, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yu, X., Yu, Z., Chen, X., and Yu, J. 2014. A hybrid image-cad based system for modeling realistic hairstyles. In I3D '14, 63--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yuksel, C., Schaefer, S., and Keyser, J. 2009. Hair meshes. ACM Trans. Graph. 28, 5, 166:1--166:7. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Capturing braided hairstyles

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 33, Issue 6
        November 2014
        704 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2661229
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 November 2014
        Published in tog Volume 33, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader