skip to main content
research-article

Robust single-view geometry and motion reconstruction

Published:01 December 2009Publication History
Skip Abstract Section

Abstract

We present a framework and algorithms for robust geometry and motion reconstruction of complex deforming shapes. Our method makes use of a smooth template that provides a crude approximation of the scanned object and serves as a geometric and topological prior for reconstruction. Large-scale motion of the acquired object is recovered using a novel space-time adaptive, non-rigid registration method. Fine-scale details such as wrinkles and folds are synthesized with an efficient linear mesh deformation algorithm. Subsequent spatial and temporal filtering of detail coefficients allows transfer of persistent geometric detail to regions not observed by the scanner. We show how this two-scale process allows faithful recovery of small-scale shape and motion features leading to a high-quality reconstruction. We illustrate the robustness and generality of our algorithm on a variety of examples composed of different materials and exhibiting a large range of dynamic deformations.

Skip Supplemental Material Section

Supplemental Material

References

  1. Ahmed, N., Theobalt, C., Dobrev, P., Seidel, H.-P., and Thrun, S. 2008. Robust fusion of dynamic shape and normal capture for high-quality reconstruction of time-varying geometry. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), 1--8.Google ScholarGoogle Scholar
  2. Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: reconstruction and parameterization from range scans. ACM Transactions on Graphics 22, 3, 587--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amberg, B., Romdhani, S., and Vetter, T. 2007. Optimal step nonrigid icp algorithms for surface registration. In Proceedings of IEEE CVPR.Google ScholarGoogle Scholar
  4. Anguelov, D., Srinivasan, P., Pang, H.-C., Koller, D., Thrun, S., and Davis, J. 2004. The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In Advances in Neural Inf. Proc. Systems 17.Google ScholarGoogle Scholar
  5. Aurich, V., and Weule, J. 1995. Non-linear gaussian filters performing edge preserving diffusion. In Mustererkennung 1995, 17. DAGM-Symposium, Springer-Verlag, 538--545. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3D faces. In Proceedings of ACM SIGGRAPH 99, ACM Press / ACM SIGGRAPH, 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics 14, 1, 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bradley, D., Popa, T., Sheffer, A., Heidrich, W., and Boubekeur, T. 2008. Markerless garment capture. ACM Transactions on Graphics 27, 3, 99:1--99:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bronstein, A. M., Bronstein, M. M., and Kimmel, R. 2006. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. National Academy of Sciences (PNAS) 103.Google ScholarGoogle Scholar
  10. Brown, B., and Rusinkiewicz, S. 2004. Non-rigid rangescan alignment using thin-plate splines. In Symp. on 3D Data Processing, Visualization, and Transmission. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Brown, B. J., and Rusinkiewicz, S. 2007. Global non-rigid alignment of 3-d scans. ACM Transactions on Graphics 26, 3, 21:1--21:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chang, W., and Zwicker, M. 2008. Automatic registration for articulated shapes. Computer Graphics Forum (Proc. SGP) 27, 5, 1459--1468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chang, W., and Zwicker, M. 2009. Range scan registration using reduced deformable models. Computer Graphics Forum (Proceedings of Eurographics 2009), to appear.Google ScholarGoogle Scholar
  14. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., and Thrun, S. 2008. Performance capture from sparse multi-view video. ACM Transactions on Graphics 27, 3, 98:1--98:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Guennebaud, G., and Gross, M. 2007. Algebraic point set surfaces. In ACM Transactions on Graphics, ACM, New York, NY, USA, vol. 26, 23:1--23:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Huang, Q., Adams, B., Wicke, M., and Guibas, L. J. 2008. Non-rigid registration under isometric deformations. Computer Graphics Forum (Proc. of SGP) 27, 5, 1459--1468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ikemoto, L., Gelfand, N., and Levoy, M. 2003. A hierarchical method for aligning warped meshes. In Proceedings of 4th Int. Conference on 3D Digital Imaging and Modeling, 434--441.Google ScholarGoogle Scholar
  18. Kimmel, R., and Sethian, J. A. 1998. Computing geodesic paths on manifolds. In Proc. Natl. Acad. Sci. USA, 8431--8435.Google ScholarGoogle Scholar
  19. Li, H., Sumner, R. W., and Pauly, M. 2008. Global correspondence optimization for non-rigid registration of depth scans. Computer Graphics Forum (Proc. SGP) 27, 5, 1421--1430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mitra, N. J., Flory, S., Ovsjanikov, M., Gelfand, N., Guibas, L., and Pottmann, H. 2007. Dynamic geometry registration. In Symposium on Geometry Processing, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Park, S. I., and Hodgins, J. K. 2006. Capturing and animating skin deformation in human motion. ACM Transactions on Graphics 25, 3, 881--889. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Park, S. I., and Hodgins, J. K. 2008. Data-driven modeling of skin and muscle deformation. ACM Transactions on Graphics 27, 3, 96:1--96:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pauly, M., Mitra, N. J., Giesen, J., Gross, M., and Guibas, L. J. 2005. Example-based 3d scan completion. In Symposium on Geometry Processing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pulli, K. 1999. Multiview registration for large data sets. In Second Int. Conf. on 3D Dig. Image and Modeling, 160--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Roberts, S. 1959. Control chart tests based on geometric moving averages. Technometrics 1, 239--250.Google ScholarGoogle ScholarCross RefCross Ref
  26. Rusinkiewicz, S., Hall-Holt, O., and Levoy, M. 2002. Real-time 3D model acquisition. ACM Transactions on Graphics 21, 3, 438--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sharf, A., Alcantara, D. A., Lewiner, T., Greif, C., Sheffer, A., Amenta, N., and Cohen-Or, D. 2008. Space-time surface reconstruction using incompressible flow. ACM Transactions on Graphics 27, 5, 110:1--110:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. ACM Transactions on Graphics 26, 3, 80:1--80:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Süssmuth, J., Winter, M., and Greiner, G. 2008. Reconstructing animated meshes from time-varying point clouds. Computer Graphics Forum (Proceedings of SGP 2008) 27, 5, 1469--1476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Vlasic, D., Baran, I., Matusik, W., and Popović, J. 2008. Articulated mesh animation from multi-view silhouettes. ACM Transactions on Graphics 27, 3, 97:1--97:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., and Schilling, A. 2007. Reconstruction of deforming geometry from time-varying point clouds. In Symposium on Geometry processing, 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wand, M., Adams, B., Ovsjanikov, M., Berner, A., Bokeloh, M., Jenke, P., Guibas, L., Seidel, H.-P., and Schilling, A. 2009. Efficient reconstruction of non-rigid shape and motion from real-time 3d scanner data. ACM Transactions on Graphics. (to appear). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Weise, T., Leibe, B., and Gool, L. V. 2007. Fast 3d scanning with automatic motion compensation. In IEEE Conference on Computer Vision and Pattern Recognition, 1--8.Google ScholarGoogle Scholar
  34. Zhang, L., and Seitz, S. M. 2000. Image-based multiresolution shape recovery by surface deformation. SPIE, S. F. El-Hakim and A. Gruen, Eds., vol. 4309, 51--61.Google ScholarGoogle Scholar
  35. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Spacetime faces: high resolution capture for modeling and animation. ACM Transactions on Graphics 23, 3, 548--558. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Robust single-view geometry and motion reconstruction

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader