skip to main content
research-article

Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data

Published:13 May 2009Publication History
Skip Abstract Section

Abstract

We present a new technique for reconstructing a single shape and its nonrigid motion from 3D scanning data. Our algorithm takes a set of time-varying unstructured sample points that capture partial views of a deforming object as input and reconstructs a single shape and a deformation field that fit the data. This representation yields dense correspondences for the whole sequence, as well as a completed 3D shape in every frame. In addition, the algorithm automatically removes spatial and temporal noise artifacts and outliers from the raw input data. Unlike previous methods, the algorithm does not require any shape template but computes a fitting shape automatically from the input data. Our reconstruction framework is based upon a novel topology-aware adaptive subspace deformation technique that allows handling long sequences with complex geometry efficiently. The algorithm accesses data in multiple sequential passes, so that long sequences can be streamed from hard disk, not being limited by main memory. We apply the technique to several benchmark datasets, significantly increasing the complexity of the data that can be handled efficiently in comparison to previous work.

Skip Supplemental Material Section

Supplemental Material

References

  1. Adams, B., Ovsjanikov, M., Wand, M., Seidel, H.-P., and Guibas, L. J. 2008. Meshless modeling of deformable shapes and their motion. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ahmed, N., Theobalt, C., Roessl, C., Thrun, S., and Seidel, H.-P. 2008. Dense correspondence finding for parametrization-free animation reconstruction from video. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  3. Allen, B., Curless, B., and Popović, Z. 2002. Articulated body deformation from range scan data. Proceedings of the ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques. 612--619. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: Reconstruction and parameterization from range scans. In ACM SIGGRAPH Papers. ACM, New York, 587--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Anguelov, D., Koller, D., Srinivasan, P., Thrun, S., Pang, H.-C., and Davis, J. 2005. The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS ).Google ScholarGoogle Scholar
  6. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. SCAPE: Shape completion and animation of people. In Proceedings of the 32nd International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Anuar, N. and Guskov, I. 2004. Extracting animated meshes with adaptive motion estimation. In Proceedings of the Vision, Modeling and Visualization Conference. 63--71.Google ScholarGoogle Scholar
  8. Au, O. K.-C., Tai, C.-L., Liu, L., and Fu, H. 2006. Dual laplacian editing for meshes. IEEE Trans. Visualiz. Comput. Graph. 12, 3, 386--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Avriel, M. 2003. Nonlinear Programming: Analysis and Methods. Dover Publishing.Google ScholarGoogle Scholar
  10. Besl, P. J. and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 2, 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. Primo: Coupled prisms for intuitive surface modeling. In SGP '06: Proceedings of the 4th Eurographics Symposium on Geometry Processing. Eurographics Association. 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26, 3, 339--347.Google ScholarGoogle ScholarCross RefCross Ref
  13. Botsch, M. and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. Visualiz. Comput. Graph. 14, 1, 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Carceroni, R. L. and Kutulakos, K. N. 2002. Multi-View scene capture by surfel sampling: From video streams to non-rigid 3d motion, shape and reflectance. Int. J. Comput. Vision 49, 2-3, 175--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Carranza, J., Theobalt, C., Magnor, M. A., and Seidel, H.-P. 2003. Free-Viewpoint video of human actors. In ACM SIGGRAPH Papers. ACM, New York, 569--577. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Chang, W. and Zwicker, M. 2008. Automatic registration for articulated shapes. Comput. Graph. Forum 27, 5.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Davis, J., Nehab, D., Ramamoorthi, R., and Rusinkiewicz, S. 2005. Spacetime stereo: A unifying framework for depth from triangulation. IEEE Trans. Pattern Anal. Mach. Intell. 27, 2, 296--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., and Thrun, S. 2008. Performance capture from sparse multi-view video. ACM Trans. Graph. 27, 3, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Fong, P. and Buron, F. 2005. High-Resolution three-dimensional sensing of fast deforming objects. In Proceedings of the IEEE/RSI International Conference on Intelligent Robots and Systems, (IROS). 1606--1611.Google ScholarGoogle Scholar
  20. Fries, T.-P. and Matthies, H. G. 2003. Classification and overview of meshfree methods. Tech. rep., TU Brunswick, Germany Nr. 2003-03.Google ScholarGoogle Scholar
  21. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3, 1126--1134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Huang, Q.-X., Adams, B., and Wand, M. 2007. Bayesian surface reconstruction via iterative scan alignment to an optimized prototype. In Proceedings of the 5th Eurographics Symposium on Geometry Processing (SCP). Eurographics Association, 213--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Huang, Q.-X., Adams, B., Wicke, M., and Guibas, L. J. 2008. Non-Rigid registration under isometric deformations. Comput. Graph. Forum 27, 5.Google ScholarGoogle ScholarCross RefCross Ref
  24. König, S. and Gumhold, S. 2007. Image-Based motion compensation for structured light scanning of dynamic scenes. In EG Workshop on Dynamic 3D Imaging (Dyn3D '07).Google ScholarGoogle Scholar
  25. Li, H., Sumner, R. W., and Pauly, M. 2008. Global correspondence optimization for non-rigid registration of depth scans. Comput. Graph. Forum 27, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Medioni, G., Lee, M., and Tang, C. 2000. A Computational Framework for Segmentation and Grouping. Elsevier. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. MESA. 2009. http://www.mesa-imaging.ch.Google ScholarGoogle Scholar
  28. Mitra, N. J., Flöry, S., Ovsjanikov, M., Gelfand, N., Guibas, L., and Pottmann, H. 2007. Dynamic geometry registration. In Proceedings of the 5th Eurographics Symposium on Geometry Processing (SGP '07). Eurographics Association, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '04). Eurographics Association, 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2005. Physically based deformable models in computer graphics. In Eurographics '05 STAR Reports, 71--94.Google ScholarGoogle Scholar
  31. Park, S. I. and Hodgins, J. K. 2006. Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25, 3, 881--889. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3, 957--964. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pekelny, Y. and Gotsman, C. 2008. Articulated object reconstruction and markerless motion capture from depth video. Comput. Graph. Forum (Proceedings of the Eurographics EG'08) 27, 2, 4.Google ScholarGoogle Scholar
  34. PMD. 2009. http://www.pmdtec.com.Google ScholarGoogle Scholar
  35. Sand, P., McMillan, L., and Popović, J. 2003. Continuous capture of skin deformation. ACM Trans. Graph. 22, 3, 578--586. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sharf, A., Alcantara, D. A., Lewiner, T., Greif, C., Sheffer, A., Amenta, N., and Cohen-Or, D. 2008. Space-Time surface reconstruction using incompressible flow. ACM Trans. Graph. (Proc. Siggraph Asia). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sheffer, A. and Kraevoy, V. 2004. Pyramid coordinates for morphing and deformation. In Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd International Symposium on (3DPVT'04). IEEE Computer Society, 68--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Shewchuk, J. R. 1994. An introduction to the conjugate gradient method without the agonizing pain. Tech. rep., Carnegie Mellon University, School of Computer Science. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Shi, L., Yu, Y., Bell, N., and Feng, W.-W. 2006. A fast multigrid algorithm for mesh deformation. ACM Trans. Graph. 25, 3, 1108--1117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2007. Mesh puppetry: Cascading optimization of mesh deformation with inverse kinematics. In ACM SIGGRAPH Papers. ACM, New York, 81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Starck, J. and Hilton, A. 2005. Spherical matching for temporal correspondence of non-rigid surfaces. In Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV'05). IEEE Computer Society, 1387--1394. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. In ACM SIGGRAPH Papers. ACM, New York, 80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-Based inverse kinematics. ACM Trans. Graph. 24, 3, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Süssmuth, J., Winter, M., and Greiner, G. 2008. Reconstructing animated meshes from time-varying point clouds. Comput. Graph. Forum 27, 5, 1469--1476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Varanasi, K., Zaharescu, A., Boyer, E., and Horaud, R. P. 2008. Temporal surface tracking using mesh evolution. In Proceedings of the 10th European Conference on Computer Vision. Lecture Notes in Computer Science. Part II. Springer-Verlag, 30--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wand, M., Jenke, P., Huang, Q., Bokeloh, M., Guibas, L., and Schilling, A. 2007. Reconstruction of deforming geometry from time-varying point clouds. In Proceedings of the 5th Eurographics Symposium on Geometry Processing (SGP'07). Eurographics Association, 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Weise, T., Leibe, B., and Gool, L. V. 2007. Fast 3D scanning with automatic motion compensation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07).Google ScholarGoogle Scholar
  49. Würmlin, S., Lamboray, E., Staadt, O. G., and Gross, M. H. 2002. 3D video recorder. In Proceedings of the 10th Pacific Conference on Computer Graphics and Applications (PG '02) . IEEE Computer Society, 325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Xu, W., Zhou, K., Yu, Y., Tan, Q., Peng, Q., and Guo, B. 2007. Gradient domain editing of deforming mesh sequences. In ACM SIGGRAPH Papers. ACM, New York, 84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zhang, L., Curless, B., and Seitz, S. M. 2003. Spacetime stereo: Shape recovery for dynamic scenes. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 367--374.Google ScholarGoogle Scholar
  52. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Spacetime faces: High-Resolution capture for modeling and animation. In ACM Annual Conference on Computer Graphics. 548--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. 2005. Large mesh deformation using the volumetric graph Laplacian. ACM Trans. Graph. 24, 3, 496--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Zitnick, C. L., Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R. 2004. High-Quality video view interpolation using a layered representation. In ACM SIGGRAPH Papers. ACM, New York, 600--608. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Zwicker, M., Pfister, H., van Baar, J., and Gross, M. 2001. Surface splatting. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, 371--378. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 28, Issue 2
            April 2009
            129 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1516522
            Issue’s Table of Contents

            Copyright © 2009 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 13 May 2009
            • Accepted: 1 February 2009
            • Received: 1 November 2008
            Published in tog Volume 28, Issue 2

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader