skip to main content
research-article

Manifold differential evolution (MDE): a global optimization method for geodesic centroidal voronoi tessellations on meshes

Published:05 December 2016Publication History
Skip Abstract Section

Abstract

Computing centroidal Voronoi tessellations (CVT) has many applications in computer graphics. The existing methods, such as the Lloyd algorithm and the quasi-Newton solver, are efficient and easy to implement; however, they compute only the local optimal solutions due to the highly non-linear nature of the CVT energy. This paper presents a novel method, called manifold differential evolution (MDE), for computing globally optimal geodesic CVT energy on triangle meshes. Formulating the mutation operator using discrete geodesics, MDE naturally extends the powerful differential evolution framework from Euclidean spaces to manifold domains. Under mild assumptions, we show that MDE has a provable probabilistic convergence to the global optimum. Experiments on a wide range of 3D models show that MDE consistently out-performs the existing methods by producing results with lower energy. Thanks to its intrinsic and global nature, MDE is insensitive to initialization and mesh tessellation. Moreover, it is able to handle multiply-connected Voronoi cells, which are challenging to the existing geodesic CVT methods.

Skip Supplemental Material Section

Supplemental Material

References

  1. Alliez, P., de Verdière, É. C., Devillers, O., and Isenburg, M. 2003. Isotropic surface remeshing. In Shape Modeling International, 49--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alliez, P., de Verdière, É. C., Devillers, O., and Isenburg, M. 2005. Centroidal voronoi diagrams for isotropic surface remeshing. Graphical Models 67, 3, 204--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Berntsen, J., and Espelid, T. O. 1992. Algorithm 706: Dcutri: An algorithm for adaptive cubature over a collection of triangles. ACM Trans. Math. Softw. 18, 3, 329--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Boender, C. G. E., and Romeijn, H. E. 1995. Stochastic methods. In Handbook of Global Optimization, Kluwer Academic Publishers, 829--869.Google ScholarGoogle Scholar
  5. Cheng, P., Miao, C., Liu, Y.-J., Tu, C., and He, Y. 2016. Solving the initial value problem of discrete geodesics. Computer-Aided Design 70, 144--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Crane, K., Weischedel, C., and Wardetzky, M. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5, 152:1--152:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Das, S., and Suganthan, P. N. 2011. Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation 15, 1, 4--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Das, S., Mullick, S. S., and Suganthan, P. N. 2016. Recent advances in differential evolution - an updated survey. Swarm and Evolutionary Computation 27, 1--30.Google ScholarGoogle ScholarCross RefCross Ref
  9. Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Review 41, 4, 637--676. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Du, Q., Gunzburger, M. D., and Ju, L. 2003. Constrained centroidal Voronoi tessellations for surfaces. SIAM Journal on Scientific Computing 24, 5, 1488--1506. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Engelbrecht, A. P. 2006. Fundamentals of Computational Swarm Intelligence. John Wiley & Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ghosh, S., Das, S., Vasilakos, A. V., and Suresh, K. 2012. On convergence of differential evolution over a class of continuous functions with unique global optimum. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42, 1, 107--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Horst, R., Pardalos, P. M., and Thoai, N. V. 2000. Introduction to Global Optimization. 2nd edition, Kluwer Academic Publishers.Google ScholarGoogle Scholar
  14. Kimmel, R., and Sethian, J. 1998. Computing geodesic paths on manifolds. Proceedings of National Academy of Sciences 95, 8431--8435.Google ScholarGoogle ScholarCross RefCross Ref
  15. Korte, B., and Vygen, J. 2006. Combinatorial Optimization: Theory and Algorithms. 3rd edition, Springer-Verlag.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Leung, Y.-S., Wang, X., He, Y., Liu, Y.-J., and Wang, C. C. L. 2015. A unified framework for isotropic meshing based on narrow-banded euclidean distance transformation. Computational Visual Media 1, 3, 239--251.Google ScholarGoogle ScholarCross RefCross Ref
  17. Lévy, B., and Liu, Y. 2010. Lp centroidal voronoi tessellation and its applications. ACM Trans. Graph. 29, 4, 119:1--119:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., and Yang, C. 2009. On centroidal Voronoi tessellation - energy smoothness and fast computation. ACM Trans. Graph. 28, 4, 101:1--101:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liu, Y.-J., Chen, Z., and Tang, K. 2011. Construction of iso-contours, bisectors, and Voronoi diagrams on triangulated surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 8, 1502--1517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Liu, Y.-J. 2015. Semi-continuity of skeletons in 2-manifold and discrete voronoi approximation. IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 9, 1938--1944.Google ScholarGoogle ScholarCross RefCross Ref
  21. Lloyd, S. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 2, 129 -- 137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lu, L., Sun, F., Pan, H., and Wang, W. 2012. Global optimization of centroidal Voronoi tessellation with monte carlo approach. IEEE Transactions on Visualization and Computer Graphics 18, 11, 1880--1890. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Mitchell, J. S., Mount, D. M., and Papadimitriou, C. H. 1987. The discrete geodesic problem. SIAM Journal on Computing 16, 4, 647--668. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Papoulis, A. 1991. Probability, Random Variables and Stochastic Processes. Third Edition, McGraw-Hill, Inc.Google ScholarGoogle Scholar
  25. Price, K., Storn, R. M., and Lampinen, J. A. 2005. Differential Evolution: A Practical Approach to Global Optimization. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Qu, B., Liang, J., Wang, Z., Chen, Q., and Suganthan, P. 2016. Novel benchmark functions for continuous multimodal optimization with comparative results. Swarm and Evolutionary Computation 26, 23--34.Google ScholarGoogle ScholarCross RefCross Ref
  27. Rong, G., Jin, M., Shuai, L., and Guo, X. 2011. Centroidal voronoi tessellation in universal covering space of manifold surfaces. Comput. Aided Geom. Des. 28, 8, 475--496. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rong, G., Liu, Y., Wang, W., Yin, X., Gu, X., and Guo, X. 2011. GPU-assisted computation of centroidal Voronoi tessellation. IEEE Transactions on Visualization and Computer Graphics 17, 3, 345--356. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Vesterstrom, J., and Thomsen, R. 2004. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In Proc. 6th Congress on Evolutionary Computation, 1980--1987.Google ScholarGoogle Scholar
  30. Wandzurat, S., and Xiao, H. 2003. Symmetric quadrature rules on a triangle. Computers & Mathematics with Applications 45, 12, 1829--1840.Google ScholarGoogle ScholarCross RefCross Ref
  31. Wang, X., Ying, X., Liu, Y.-J., Xin, S.-Q., Wang, W., Gu, X., Mueller-Wittig, W., and He, Y. 2015. Intrinsic computation of centroidal Voronoi tessellation (cvt) on meshes. Computer-Aided Design 58, 51--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Xu, C., Wang, T. Y., Liu, Y., Liu, L., and He, Y. 2015. Fast wavefront propagation (FWP) for computing exact geodesic distances on meshes. IEEE Trans. Vis. Comput. Graph. 21, 7, 822--834.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yan, D., and Wonka, P. 2016. Non-obtuse remeshing with centroidal Voronoi tessellation. IEEE Trans. Vis. Comput. Graph. 22, 9, 2136--2144.Google ScholarGoogle ScholarCross RefCross Ref
  34. Yan, D.-M., Lévy, B., Liu, Y., Sun, F., and Wang, W. 2009. Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Comput. Graph. Forum 28, 5, 1445--1454. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yan, D., Bao, G., Zhang, X., and Wonka, P. 2014. Low-resolution remeshing using the localized restricted voronoi diagram. IEEE Trans. Vis. Comput. Graph. 20, 10, 1418--1427.Google ScholarGoogle ScholarCross RefCross Ref
  36. Ying, X., Wang, X., and He, Y. 2013. Saddle vertex graph (svg): A novel solution to the discrete geodesic problem. ACM Trans. Graph. 32, 6, 170:1--170:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ying, X., Xin, S., and He, Y. 2014. Parallel Chen-Han (PCH) algorithm for discrete geodesics. ACM Trans. Graph. 33, 1, 9:1--9:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zaharie, D. 2001. On the explorative power of differential evolution algorithms. In Proc. 3rd Int. Workshop Symbolic and Numerical Algorithms on Scientific Computing.Google ScholarGoogle Scholar

Index Terms

  1. Manifold differential evolution (MDE): a global optimization method for geodesic centroidal voronoi tessellations on meshes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 6
        November 2016
        1045 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2980179
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 December 2016
        Published in tog Volume 35, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader