skip to main content
research-article

Visual knitting machine programming

Published:12 July 2019Publication History
Skip Abstract Section

Abstract

Industrial knitting machines are commonly used to manufacture complicated shapes from yarns; however, designing patterns for these machines requires extensive training. We present the first general visual programming interface for creating 3D objects with complex surface finishes on industrial knitting machines. At the core of our interface is a new, augmented, version of the stitch mesh data structure. The augmented stitch mesh stores low-level knitting operations per-face and encodes the dependencies between faces using directed edge labels. Our system can generate knittable augmented stitch meshes from 3D models, allows users to edit these meshes in a way that preserves their knittability, and can schedule the execution order and location of each face for production on a knitting machine. Our system is general, in that its knittability-preserving editing operations are sufficient to transform between any two machine-knittable stitch patterns with the same orientation on the same surface. We demonstrate the power and flexibility of our pipeline by using it to create and knit objects featuring a wide range of patterns and textures, including intarsia and Fair Isle colorwork; knit and purl textures; cable patterns; and laces.

Skip Supplemental Material Section

Supplemental Material

papers_313.mp4

mp4

312.8 MB

References

  1. Carlos Aliaga, Carlos Castillo, Diego Gutierrez, Miguel A. Otaduy, Jorge Lopez-Moreno, and Adrian Jarabo. 2017. An Appearance Model for Textile Fibers. Computer Graphics Forum 36, 4 (2017), 35--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aric Bartle, Alla Sheffer, Vladimir G. Kim, Danny M. Kaufman, Nicholas Vining, and Floraine Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. 35, 4 (Jul 2016), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Sarah-Marie Belcastro. 2009. Every Topological Surface Can Be Knit: A Proof. Journal of Mathematics and the Arts 3, 2 (2009), 67--83.Google ScholarGoogle ScholarCross RefCross Ref
  4. Floraine Berthouzoz, Akash Garg, Danny M Kaufman, Eitan Grinspun, and Maneesh Agrawala. 2013. Parsing Sewing Patterns Into 3D Garments. ACM Trans. Graph. (TOG) 32, 4 (2013), 85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Michel Carignan, Ying Yang, Nadia Magnenat Thalmann, and Daniel Thalmann. 1992. Dressing Animated Synthetic Actors With Complex Deformable Clothes. ACM SIGGRAPH'92 (1992), 99--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Yanyun Chen, S. Lin, Hua Zhong, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum. 2003. Realistic rendering and animation of knitwear. IEEE Transactions on Visualization and Computer Graphics 9, 1 (Jan 2003), 43--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A. Otaduy. 2014. Yarn-level Simulation of Woven Cloth. ACM Trans. Graph. 33, 6, Article 207 (Nov. 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A. Otaduy. 2015. Efficient Simulation of Knitted Cloth Using Persistent Contacts. In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '15). ACM, 55--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. G. Cirio, J. Lopez-Moreno, and M. A. Otaduy. 2017. Yarn-Level Cloth Simulation with Sliding Persistent Contacts. IEEE Transactions on Visualization and Computer Graphics 23, 2 (Feb 2017), 1152--1162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Phillipe Decaudin, Dan Julius, Jamie Wither, Laurence Boissieux, Alla Sheffer, and Marie-Paule Cani. 2006. Virtual Garments: A Fully Geometric Approach for Clothing Design. CG Forum (Eurographics) 25, 3 (2006), 625--634.Google ScholarGoogle ScholarCross RefCross Ref
  12. Mario Deuss, Anders Holden Deleuran, Sofien Bouaziz, Bailin Deng, Daniel Piker, and Mark Pauly. 2015. ShapeOp---A Robust and Extensible Geometric Modelling Paradigm. Springer International Publishing, Cham, 505--515.Google ScholarGoogle Scholar
  13. Shen Dong, Scott Kircher, and Michael Garland. 2005. Harmonic Functions for Quadrilateral Remeshing of Arbitrary Manifolds. Computer Aided Geometric Design 22, 5 (2005), 392--423. Google ScholarGoogle ScholarCross RefCross Ref
  14. Ashim Garg and Roberto Tamassia. 2001. On the Computational Complexity of Upward and Rectilinear Planarity Testing. SIAM J. Comput. 31, 2 (2001), 601--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. E. Groller, R. T. Rau, and W. Strasser. 1995. Modeling and visualization of knitwear. IEEE Transactions on Visualization and Computer Graphics 1, 4 (Dec 1995), 302--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Eduard Gröller, René T Rau, and Wolfgang Straßer. 1996. Modeling Textiles as Three Dimensional Textures. In Rendering Techniques' 96. Springer, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Donald House and David Breen. 2000. Cloth modeling and animation. AK Peters/CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008a. Knitting a 3D Model. Computer Graphics Forum 27, 7, 1737--1743.Google ScholarGoogle ScholarCross RefCross Ref
  19. Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008b. Knitty: 3D Modeling of Knitted Animals with a Production Assistant Interface. In Eurographics.Google ScholarGoogle Scholar
  20. Wenzel Jakob, Adam Arbree, Jonathan T. Moon, Kavita Bala, and Steve Marschner. 2010. A Radiative Transfer Framework for Rendering Materials with Anisotropic Structure. ACM Trans. Graph. 29, 4, Article 53 (2010), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic Elastoplasticity for Cloth, Knit and Hair Frictional Contact. ACM Trans. Graph. 36, 4, Article 152 (July 2017), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating Knitted Cloth at the Yarn Level. ACM Trans. Graph. (SIGGRAPH'08) 27, 3 (2008), 65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient Yarn-based Cloth with Adaptive Contact Linearization. ACM Trans. Graph. (SIGGRAPH'10) 29, 4 (2010), 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner. 2015. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph. 35, 1, Article 1 (2015), 26 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Chelsea Knittel, Diana Nicholas, Reva Street, Caroline Schauer, and Genevieve Dion. 2015. Self-Folding Textiles through Manipulation of Knit Stitch Architecture. Fibers 3, 4 (Dec 2015), 575--587.Google ScholarGoogle ScholarCross RefCross Ref
  26. Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L. James, and Steve Marschner. 2018. Interactive Design of Yarn-Level Cloth Patterns. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia 2018) 37, 6 (11 2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Minchen Li, Alla Sheffer, Eitan Grinspun, and Nicholas Vining. 2018. FoldSketch: Enriching Garments with Physically Reproducible Folds. ACM Trans. Graph. 37, 4 (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Jenny Lin, Vidya Narayanan, and James McCann. 2018. Efficient Transfer Planning for Flat Knitting. In Proceedings of the 2Nd ACM Symposium on Computational Fabrication (SCF '18). ACM, New York, NY, USA, Article 1, 7 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jorge Lopez-Moreno, David Miraut, Gabriel Cirio, and Miguel A. Otaduy. 2015. Sparse GPU Voxelization of Yarn-Level Cloth. Computer Graphics Forum (2015), 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Fujun Luan, Shuang Zhao, and Kavita Bala. 2017. Fiber-Level On-the-Fly Procedural Textiles. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 123--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. James McCann. 2017. The "Knitout" (.k) File Format. {Online}. Available from: https://textiles-lab.github.io/knitout/knitout.html.Google ScholarGoogle Scholar
  32. James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jennifer Mankoff, and Jessica Hodgins. 2016. A Compiler for 3D Machine Knitting. ACM Trans. Graph. 35, 4, Article 49 (July 2016), 49:1--49:11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Michael Meißner and Bernd Eberhardt. 1998. The art of knitted fabrics, realistic & physically based modelling of knitted patterns. In Computer Graphics Forum, Vol. 17. Wiley Online Library, 355--362.Google ScholarGoogle Scholar
  34. Yuki Mori and Takeo Igarashi. 2007. Plushie: An Interactive Design System for Plush Toys. ACM Trans. Graph. (SIGGRAPH'07) 26, 3 (2007), 45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James McCann. 2018. Automatic Machine Knitting of 3D Meshes. ACM Trans. Graph. 37, 3, Article 35 (Aug. 2018), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Jifei Ou, Daniel Oran, Don Derek Haddad, Joseph Paradiso, and Hiroshi Ishii. 2019. SensorKnit: Architecting Textile Sensors with Machine Knitting. 3D Printing and Additive Manufacturing 6, 1 (2019), 1--11.Google ScholarGoogle Scholar
  37. Chi-Han Peng and Peter Wonka. 2013. Connectivity Editing for Quad-dominant Meshes. In Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing (SGP '13). Eurographics Association, 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Hannah Perner-Wilson, Leah Buechley, and Mika Satomi. 2011. Handcrafting Textile Interfaces from a Kit-of-no-parts. In Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction (TEI '11). ACM, 61--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Mariana Popescu, Matthias Rippmann, Tom Van Mele, and Philippe Block. 2018. Automated Generation of Knit Patterns for Non-developable Surfaces. In Humanizing Digital Reality, De Rycke K. et al. (Ed.). Springer, Singapore.Google ScholarGoogle Scholar
  40. Kai Schröder, Shuang Zhao, and Arno Zinke. 2012. Recent Advances in Physically-based Appearance Modeling of Cloth. In SIGGRAPH Asia 2012 Courses (SA '12). ACM, New York, NY, USA, Article 12, 52 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Shima Seiki. 2011. SDS-ONE Apex3. {Online}. Available from: http://www.shimaseiki.com/product/design/sdsone_apex/flat/.Google ScholarGoogle Scholar
  42. Soft Byte Ltd. 1999. Designaknit. {Online}. Available from: https://www.softbyte.co.uk/designaknit.htm.Google ScholarGoogle Scholar
  43. David J Spencer. 2001. Knitting technology: a comprehensive handbook and practical guide. Vol. 16. CRC press.Google ScholarGoogle Scholar
  44. Stoll. 2011. M1Plus pattern software. {Online}. Available from: http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1.Google ScholarGoogle Scholar
  45. Shinjiro Sueda, Garrett L. Jones, David I. W. Levin, and Dinesh K. Pai. 2011. Large-scale Dynamic Simulation of Highly Constrained Strands. In ACM SIGGRAPH 2011 Papers (SIGGRAPH '11). ACM, New York, NY, USA, Article 39, 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Emmanuel Turquin, Jamie Wither, Laurence Boissieux, Marie-Paule Cani, and John Hughes. 2007. A Sketch-based Interface for Clothing Virtual Characters. IEEE Comp. Graph. and Applications 27, 1 (2007), 72--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun. 2011. Sensitive Couture for Interactive Garment Editing and Modeling. ACM Trans. Graph. (SIGGRAPH'11) 30, 4 (2011), 90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Jenny Underwood. 2009. The design of 3D shape knitted preforms. Ph.D. Dissertation. Fashion and Textiles, RMIT University.Google ScholarGoogle Scholar
  49. Pascal Volino and Nadia Magnenat-Thalmann. 2000. Virtual Clothing: Theory and Practice. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  50. Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure. 2009. A Simple Approach to Nonlinear Tensile Stiffness for Accurate Cloth Simulation. ACM Trans. Graph. 28, 4 (2009), 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Hao Wang. 1961. Proving Theorems by Pattern Recognition II. Bell System Technical Journal 40 (1961), 1--42.Google ScholarGoogle ScholarCross RefCross Ref
  52. Huamin Wang. 2018. Rule-free Sewing Pattern Adjustment with Precision and Efficiency. ACM Trans. Graph. 37, 4, Article 53 (July 2018), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J. Mitra. 2018. Learning a Shared Shape Space for Multimodal Garment Design. ACM Trans. Graph. 37, 6, Article 203, 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. 2018. Stitch Meshing. ACM Trans. Graph. (Proceedings of SIGGRAPH 2018) 37, 4, Article 130 (jul 2018), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable Stitch Meshes. ACM Trans. Graph. 38, 1, Article 10 (Jan. 2019), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Kui Wu and Cem Yuksel. 2017a. Real-time Cloth Rendering with Fiber-level Detail. IEEE Transactions on Visualization and Computer Graphics PP, 99 (2017), 1--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Kui Wu and Cem Yuksel. 2017b. Real-time Fiber-level Cloth Rendering. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D 2017). ACM, New York, NY, USA, 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Ying-Qing Xu, Yanyun Chen, Stephen Lin, Hua Zhong, Enhua Wu, Baining Guo, and Heung-Yeung Shum. 2001. Photorealistic Rendering of Knitwear Using the Lumislice. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). ACM, New York, NY, USA, 391--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch Meshes for Modeling Knitted Clothing with Yarn-level Detail. ACM Trans. Graph. (Proceedings of SIGGRAPH 2012) 31, 3, Article 37 (2012), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Hao Zhang, Oliver Van Kaick, and Ramsay Dyer. 2010. Spectral Mesh Processing. In Computer graphics forum, Vol. 29. Wiley Online Library, 1865--1894.Google ScholarGoogle Scholar
  61. Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2011. Building Volumetric Appearance Models of Fabric Using Micro CT Imaging. ACM Trans. Graph. 30, 4, Article 44 (2011), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Shuang Zhao, Fujun Luan, and Kavita Bala. 2016a. Fitting Procedural Yarn Models for Realistic Cloth Rendering. ACM Trans. Graph. 35, 4, Article 51 (2016), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016b. Downsampling Scattering Parameters for Rendering Anisotropic Media. ACM Trans. Graph. 35, 6 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Visual knitting machine programming

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 38, Issue 4
        August 2019
        1480 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/3306346
        Issue’s Table of Contents

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 July 2019
        Published in tog Volume 38, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader