skip to main content
research-article

Efficient yarn-based cloth with adaptive contact linearization

Published:26 July 2010Publication History
Skip Abstract Section

Abstract

Yarn-based cloth simulation can improve visual quality but at high computational costs due to the reliance on numerous persistent yarn-yarn contacts to generate material behavior. Finding so many contacts in densely interlinked geometry is a pathological case for traditional collision detection, and the sheer number of contact interactions makes contact processing the simulation bottleneck. In this paper, we propose a method for approximating penalty-based contact forces in yarn-yarn collisions by computing the exact contact response at one time step, then using a rotated linear force model to approximate forces in nearby deformed configurations. Because contacts internal to the cloth exhibit good temporal coherence, sufficient accuracy can be obtained with infrequent updates to the approximation, which are done adaptively in space and time. Furthermore, by tracking contact models we reduce the time to detect new contacts. The end result is a 7- to 9-fold speedup in contact processing and a 4- to 5-fold overall speedup, enabling simulation of character-scale garments.

Skip Supplemental Material Section

Supplemental Material

tp021-10.mp4

mp4

65.4 MB

References

  1. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM SIGGRAPH Asia 27, 5, 164:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. ACM SIGGRAPH, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baraff, D., Witkin, A., and Kass, M. 2003. Untangling cloth. ACM Trans. Graph. 22, 3, 862--870. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barbič, J., and James, D. 2005. Real-Time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics 24, 3 (Aug.), 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., and Grinspun, E. 2006. A quadratic bending model for inextensible surfaces. In Fourth Eurographics Symposium on Geometry Processing, 227--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete viscous threads. ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévěque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. 25, 3 (August), 1180--1187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bridson, R., Fedkiw, R., and john Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM SIGGRAPH, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. Symposium on Computer Animation 32, 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic shells: A practical nonlinear sound model for near-rigid thin shells. ACM Transactions on Graphics 28, 5 (Dec.), 119:1--119:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Choi, K., and Ko, H. 2002. Stable but responsive cloth. ACM SIGGRAPH, 604--611. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chu, L. 2005. A Framework for Extracting Cloth Descriptors from the Underlying yarn Structure. PhD thesis, University of California, Berkeley.Google ScholarGoogle Scholar
  14. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H. 2001. Dynamic real-time deformations using space and time adaptive sampling. ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. English, E., and Bridson, R. 2008. Animating developable surfaces using nonconforming elements. ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Etzmuss, O., Keckeisen, M., and Strasser, W. 2003. A fast finite element solution for cloth modelling. In Computer Graphics and Applications, 2003. Proceedings. 11th Pacific Conference on, 244--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Felippa, C. 2000. A systematic approach to the element-independent corotational dynamics of finite elements. Center for Aerospace Structures Document Number CU-CAS-00-03, College of Engineering, University of Colorado.Google ScholarGoogle Scholar
  18. Gao, J., Guibas, L. J., and Nguyen, A. 2004. Deformable spanners and applications. Proc. 20th ACM Symp. on Comp. Geom., 179--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Garg, A., Grinspun, E., Wardetzky, M., and Zorin, D. 2007. Cubic Shells. In 2007 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, 91--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient simulation of inextensible cloth. ACM SIGGRAPH 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Govindaraju, N. K., Knott, D., Jain, N., Kabul, I., Tamstorf, R., Gayle, R., Lin, M. C., and Manocha, D. 2005. Interactive collision detection between deformable models using chromatic decomposition. ACM Trans. Graph. 24, 3, 991--999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Grinspun, E., Krysl, P., and Schröder, P. 2002. CHARMS: A simple framework for adaptive simulation. ACM Transactions on Graphics 21, 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Grinspun, E., Hirani, A., Desbrun, M., and Schröder, P. 2003. Discrete shells. Symposium on Computer Animation, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Guibas, L. 2004. Kinetic Data Structures. In Handbook of Data Structures and Applications, D. Mehta and S. Sahni, Eds. Chapman and Hall/CRC.Google ScholarGoogle Scholar
  25. Harmon, D., Vouga, E., Smith, B., Tamstorf, R., and Grinspun, E. 2009. Asynchronous contact mechanics. ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Hubbard, P. 1995. Collision detection for interactive graphics applications. IEEE Trans. Visualization and Computer Graphics 1, 3, 218--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Hutchinson, D., Preston, M., and Hewitt, T. 1996. Adaptive refinement for mass/spring simulations. In Proceedings of the Eurographics workshop on Computer animation and simulation'96, Springer-Verlag New York, Inc., 45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kaldor, J., James, D. L., and Marschner, S. 2008. Simulating knitted cloth at the yarn level. ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kawabata, S., Niwa, M., and Kawai, H. 1973. The finite deformation theory of plain-weave fabrics part I: The biaxial-deformation theory. Journal of the Textile Institute 64, 21--46.Google ScholarGoogle ScholarCross RefCross Ref
  30. Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kim, T., and James, D. L. 2009. Skipping steps in deformable simulation with online model reduction. ACM Trans. Graph. 28, 5, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. King, M., Jearanaisilawong, P., and Scorate, S. 2005. A continuum constitutive model for the mechanical behavior of woven fabrics. International Journal of Solids and Structures 42, 3867--3896.Google ScholarGoogle ScholarCross RefCross Ref
  33. Mirtich, B. 2000. Timewarp rigid body simulation. In Proceedings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, 193--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Müller, M., and Gross, M. 2004. Interactive virtual materials. In Proceedings of Graphics Interface 2004, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In ACM SIGGRAPH Symposium on Computer Animation, 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM SIGGRAPH 24, 3, 471--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pai, D. 2002. STRANDS: Interactive simulation of thin solids using Cosserat models. Eurographics 21, 347--352.Google ScholarGoogle ScholarCross RefCross Ref
  39. Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. Proc. Graphics Interface '95, 147--154.Google ScholarGoogle Scholar
  40. Provot, X. 1997. Collision and self-collision handling in cloth model dedicated to design garments. In Computer Animation and Simulation '97: Proceedings of the Eurographics Workshop in Budapest, Hungary, September 2--3, 1997, Springer, 177.Google ScholarGoogle ScholarCross RefCross Ref
  41. Rivers, A. R., and James, D. L. 2007. FastLSM: Fast lattice shape matching for robust real-time deformation. ACM Trans. Graph. 26, 3, 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Spillmann, J., and Teschner, M. 2008. An adaptive contact model for the robust simulation of knots. Eurographics 27, 497--506.Google ScholarGoogle ScholarCross RefCross Ref
  43. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. Computer Graphics 21, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M., Faure, F., Magnenat-Thalmann, N., Strasser, W., and Volino, P. 2005. Collision detection for deformable objects. In Computer Graphics Forum, vol. 24, Blackwell Publishing, 61--81.Google ScholarGoogle Scholar
  45. Theetten, A., Grisoni, L., Duriez, C., and Merlhiot, X. 2007. Quasi-dynamic splines. In Proc. ACM Symposium on Solid and Physical Modeling '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Villard, J., and Borouchaki, H. 2005. Adaptive meshing for cloth animation. Engineering with Computers 20, 4, 333--341. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Volino, P., and Thalmann, N. M. 2000. Implementing fast cloth simulation with collision response. In Proc. Computer Graphics International, 257--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Volino, P., martin Courchesne, and Magnenat-Thalmann, N. 1995. Versatile and efficient techniques for simulating cloth and other deformable objects. In Proc. SIGGRAPH '95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Zeng, X., Tan, V. B. C., and Shin, V. P. W. 2006. Modelling inter-yarn friction in woven fabric armor. International Journal for Numerical Methods in Engineering 66, 1309--1330.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Efficient yarn-based cloth with adaptive contact linearization

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 29, Issue 4
            July 2010
            942 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1778765
            Issue’s Table of Contents

            Copyright © 2010 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 26 July 2010
            Published in tog Volume 29, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader