skip to main content
research-article
Open Access

Interpretable machine learning: moving from mythos to diagnostics

Published:21 July 2022Publication History
First page image

References

  1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B. Sanity checks for saliency maps. In Proceedings of the 32nd Intern. Conf. Neural Info. Processing Systems, 2018, 9525--9536 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alvarez-Melis, D., Jaakkola, T. 2018. On the robustness of interpretability methods. 2018; https://arxiv.org/abs/1806.08049.Google ScholarGoogle Scholar
  3. Arya, V. et al. One explanation does not fit all: a toolkit and taxonomy of AI explainability techniques. 2019; https://arxiv.org/pdf/1909.03012.pdf.Google ScholarGoogle Scholar
  4. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., Samek, W. On pixelwise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS ONE 10, 7 (2015): e0130140; https://journals.plos.org/plosone/article?id Google ScholarGoogle ScholarCross RefCross Ref
  5. Bansal, G., Wu, T., Zhu, J., Fok, R., Nushi, B., Kamar, E., Ribeiro, M.T., Weld, D.S. Does the whole exceed its parts? The effect of AI explanations on complementary team performance. 2020; https://arxiv.org/pdf/2006.14779.pdf.Google ScholarGoogle Scholar
  6. Barocas, S., Selbst, A.D., Raghavan, M. The hidden assumptions behind counterfactual explanations and principal reasons. In Proceedings of the Conf. Fairness, Accountability, and Transparency, 2020, 80--89 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bhatt, U. et al. Explainable machine learning in deployment. In Proceedings of the Conf. Fairness, Accountability, and Transparency, 2020, 648--657 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chen, V., Li, J., Kim, J.S., Plumb, G., Talwalkar, A. Interpretable Machine Learning: Moving from Mythos to Diagnostics. 2021; arXiv:2103.06254.Google ScholarGoogle Scholar
  9. Doshi-Velez, F., Kim, B. Towards a rigorous science of interpretable machine learning. 2017; https://arxiv.org/pdf/1702.08608.pdf.Google ScholarGoogle Scholar
  10. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L. Explaining explanations: an overview of interpretability of machine learning. In Proceedings of the 5th IEEE Intern. Conf. Data Science and Advanced Analytics, 2018; https://ieeexplore.ieee.org/document/8631448.Google ScholarGoogle Scholar
  11. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D. A survey of methods for explaining black box models. ACM Computing Surveys 51, 5 (2018), 1--42 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hastie, T.J., Tibshirani, R.J. Generalized additive models. Monographs on Statistics and Applied Probability 43 (1990). Chapman and Hall/CRC.Google ScholarGoogle Scholar
  13. Hong, S.R., Hullman, J., Bertini, E. Human factors in model interpretability: industry practices, challenges, and needs. In Proceedings of the ACM on Human-Computer Interaction 4 (2020), 1--26 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kaur, H., Nori, H., Jenkins, S., Caruana, R., Wallach, H., Wortman Vaughan, J. Interpreting interpretability: understanding data scientists' use of interpretability tools for machine learning. In Proceedings of the CHI Conf. Human Factors in Computing Systems, 2020, 1--14 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Krishnan, M. Against interpretability: a critical examination of the interpretability problem in machine learning. Philosophy & Technology 33 (2020), 487--502; https://link.springer.com/article/10.1007/s13347-019-00372-9.Google ScholarGoogle ScholarCross RefCross Ref
  16. Laugel, T., Lesot, M.-J., Marsala, C., Detyniecki, M. 2019. Issues with post-hoc counterfactual explanations: a discussion. 2019; https://arxiv.org/pdf/1906.04774.pdf.Google ScholarGoogle Scholar
  17. Lipton, Z.C. The mythos of model interpretability. ACM Queue 16, 3 (2018), 31--57; https://queue.acm.org/detail.cfm?id=3241340.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lundberg, S.M., Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 30 (2017); https://papers.nips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.Google ScholarGoogle Scholar
  19. Mohseni, S., Zarei, N., Ragan, E. A multidisciplinary survey and framework for design and evaluation of explainable AI systems. ACM Trans. Interactive Intelligence Systems 1, 1 (2020); https://arxiv.org/pdf/1811.11839.pdf.Google ScholarGoogle Scholar
  20. Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B. Interpretable machine learning: definitions, methods, and applications. In Proceedings of the National Academy of Sciences 116, 44 (2019), 22071--22080; https://www.pnas.org/content/116/44/22071.Google ScholarGoogle ScholarCross RefCross Ref
  21. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence 1 (2019), 206--215; https://www.nature.com/articles/s42256-019-0048-x.Google ScholarGoogle ScholarCross RefCross Ref
  22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of IEEE Intern. Conf. Computer Vision, (2017), 618--626; https://ieeexplore.ieee.org/document/8237336.Google ScholarGoogle ScholarCross RefCross Ref
  23. Simonyan, K., Vedaldi, A., Zisserman, A. Deep inside convolutional networks: visualising image classification models and saliency maps. 2013; https://arxiv.org/abs/1312.6034.Google ScholarGoogle Scholar
  24. Sundararajan, M., Taly, A., Yan, Q. Axiomatic attribution for deep networks. In Proceedings of the 34th Intern. Conf. Machine Learning, 2017; http://proceedings.mlr.press/v70/sundararajan17a.html.Google ScholarGoogle Scholar

Index Terms

  1. Interpretable machine learning: moving from mythos to diagnostics

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Communications of the ACM
        Communications of the ACM  Volume 65, Issue 8
        August 2022
        91 pages
        ISSN:0001-0782
        EISSN:1557-7317
        DOI:10.1145/3550455
        • Editor:
        • James Larus
        Issue’s Table of Contents

        Copyright © 2022 This work is licensed under a http://creativecommons.org/licenses/by/4.0/

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Popular
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format