skip to main content
article

Stochastic simplification of aggregate detail

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

Many renderers perform poorly on scenes that contain a lot of detailed geometry. The load on the renderer can be alleviated by simplification techniques, which create less expensive representations of geometry that is small on the screen. Current simplification techniques for high-quality surface-based rendering tend to work best with element detail (i.e., detail due to the complexity of individual elements) but not as well with aggregate detail (i.e., detail due to the large number of elements). To address this latter type of detail, we introduce a stochastic technique related to some approaches used for point-based renderers. Scenes are rendered by randomly selecting a subset of the geometric elements and altering those elements statistically to preserve the overall appearance of the scene. The amount of simplification can depend on a number of factors, including screen size, motion blur, and depth of field.

References

  1. Apodaca, A., and Gritz, L. 1999. Advanced RenderMan: Creating CGI for Motion Pictures. Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Christensen, P., and Batali, D. 2004. An irradiance atlas for global illumination in complex production scenes. In Eurographics Symposium on Rendering, 133--141. Google ScholarGoogle ScholarCross RefCross Ref
  3. Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P., Brooks, F., and Wright, W. 1996. Simplification envelopes. In Proceedings of ACM SIGGRAPH 1996, ACM, 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cook, R. L., Halstead, J., Planck, M., and Ryu, D. 2007. Stochastic simplification of aggregate detail. Tech. Rep. 06-05a, Pixar Animation Studios. http://graphics.pixar.com/StochasticSimplification/.Google ScholarGoogle Scholar
  5. Crow, F. C. 1982. A more flexible image generation environment. In Proceedings of ACM SIGGRAPH 1982, Computer Graphics, ACM, 9--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dachsbacher, C., Vogelgsang, C., and Stamminger, M. 2003. Sequential point trees. In Proceedings of ACM SIGGRAPH 2003, ACM Transactions on Graphics, ACM, 657--662. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Décoret, X., Durand, F., Sillion, F. X., and Dorsey, J. 2003. Billboard clouds for extreme model simplification. In Proceedings of ACM SIGGRAPGH 2003, ACM, 689--696. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Deussen, O., Hanrahan, P., Lintermann, B., Měch, R., Pharr, M., and Prusinkiewicz, P. 1998. Realistic modeling and rendering of plant ecosystems. In Proceedings of ACM SIGGRAPH 1998, ACM, 275--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Deussen, O., Colditz, C., Stamminger, M., and Drettakis, G. 2002. Interactive visualization of complex plant ecosystems. In Proceedings of the Conference on Visualization 2002, 219--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Erikson, C., and Manocha, D. 1999. Gaps: General and automatic polygonal simplification. In Proceedings of the 1999 symposium on Interactive 3D graphics, 79--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Garland, M., and Heckbert, P. 1997. Surface simplification using quadric error meshes. In Proceedings of ACM SIGGRAPH 1997, ACM, 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Garland, M. 1999. Multiresolution modeling: Survey & future opportunities. In Eurographics '99 State of the Art Report.Google ScholarGoogle Scholar
  13. Gobbetti, E., and Marton, F. 2004. Layered point clouds. In Syposium on Point-Based Graphics, 113--120. Google ScholarGoogle ScholarCross RefCross Ref
  14. Hoppe, H. 1996. Progressive meshes. In Proceedings of ACM SIGGRAPH 1996, ACM, 99--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hoppe, H. 1998. Smooth view-dependent level-of-detail control and its application to terrain rendering. In IEEE Visualization, 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kalaiah, A., and Varshney, A. 2003. Statistical point geometry. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 107--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Klein, J., Krokowski, J., Fischer, M., Wand, M., Wanka, R., and auf der Heide, F. M. 2002. The randomized sample tree: a data structure for interactive walkthroughs in externally stored virtual environments. In Proceedings of the ACM symposium on Virtual reality software and technology, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lacewell, J. D., Edwards, D., Shirley, P., and Thompson, W. B. 2006. Stochastic billboard clouds for interactive foliage rendering. Journal of Graphics Tools 11, 1, 1--12.Google ScholarGoogle ScholarCross RefCross Ref
  19. Lounsbery, M., DeRose, T., and Warren, J. 1997. Multiresolution analysis for surfaces of arbitrary topological type. ACM Transactions on Graphics 16, 1 (January), 34--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Luebke, D., and Erikson, C. 1997. View-dependent simplification of arbitrary polygonal environments. In Proceedings of ACM SIGGRAPH 1997, ACM, 199--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Luebke, D., and Hallen, B. 2001. Perceptually driven simplification for interactive rendering. In Proceedings of the Eurographics Workshop on Rendering, 223--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., and Huebner, R. 2002. Level of Detail for 3D Graphics. Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Neyret, F. 1995. Animated texels. In Computer Animation and Simulation '95, Eurographics, 97--103.Google ScholarGoogle ScholarCross RefCross Ref
  24. Neyret, F. 1998. Modeling, animating, and rendering complex scenes using volumetric textures. IEEE Transactions on Visualization and Computer Graphics 4, 1 (January), 55--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Pfister, H., Zwicker, M., van Baar, J., and Gross, M. 2000. Surfels: Surface elements as rendering primitives. In Proceedings of ACM SIGGRAPH 2000, ACM, 335--342. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Prusinkiewicz, P., James, M., and Mech, R. 1994. Synthetic topiary. In Proceedings of ACM SIGGRAPH 1994, ACM, 351--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Reeves, B. 1983. Particle systems - a technique for modeling a class of fuzzy objects. ACM Transactions on Graphics 2, 2 (April), 91--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rusinkiewicz, S., and Levoy, M. 2000. Qsplat: A multiresolution point rendering system for large meshes. In Proceedings of ACM SIGGRAPH 2000, ACM, 343--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Schaufler, G., and Stürzlinger, W. 1996. A three dimensional image cache for virtual reality. In Eurographics '96 Proceedings, 227--235.Google ScholarGoogle Scholar
  30. Stamminger, M., and Drettakis, G. 2001. Interactive sampling and rendering for complex and procedural geometry. In Proceedings of the Eurographics Workshop on Rendering Techniques, Springer-Verlag, London, UK, 151--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wand, M., and Strasser, W. 2002. Multi-resolution rendering of complex animated scenes. Computer Graphics Forum 21, 3, 483--483.Google ScholarGoogle ScholarCross RefCross Ref
  32. Wand, M., Fischer, M., Peter, I., auf der Heide, F. M., and Strasser, W. 2001. The randomized z-buffer algorithm: Interactive rendering of highly complex scenes. In Proceedings of ACM SIGGRAPH 2001, ACM, 361--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Williams, N., Luebke, D., Cohen, J., Kelley, M., and Schubert, B. 2003. Perceptually guided simplification of lit, textured meshes. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics, 113--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wilson, A., and Manocha, D. 2003. Simplifying complex environments using incremental textured depth meshes. In proceedings of ACM SIGGRAPH 2003, ACM, 678--688. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yoon, S.-E., Lauterbach, C., and Manocha, D. 2006. R-lods: fast lod-based ray tracing of massive models. The Visual Computer 22, 9, 772--784. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Stochastic simplification of aggregate detail

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 26, Issue 3
        July 2007
        976 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1276377
        Issue’s Table of Contents

        Copyright © 2007 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 29 July 2007
        Published in tog Volume 26, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader