skip to main content
research-article

Minimum-weight triangulation is NP-hard

Published:15 May 2008Publication History
Skip Abstract Section

Abstract

A triangulation of a planar point set S is a maximal plane straight-line graph with vertex set S. In the minimum-weight triangulation (MWT) problem, we are looking for a triangulation of a given point set that minimizes the sum of the edge lengths. We prove that the decision version of this problem is NP-hard, using a reduction from PLANAR 1-IN-3-SAT. The correct working of the gadgets is established with computer assistance, using dynamic programming on polygonal faces, as well as the β-skeleton heuristic to certify that certain edges belong to the minimum-weight triangulation.

Skip Supplemental Material Section

Supplemental Material

References

  1. Aichholzer, O., Aurenhammer, F., and Hainz, R. 1999. New results on MWT subgraphs. Inf. Proc. Lett. 69, 5, 215--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Anagnostou, E., and Corneil, D. 1993. Polynomial-time instances of the minimum weight triangulation problem. Comput. Geom. Theory Appl. 3, 5, 247--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Beirouti, R., and Snoeyink, J. 1998. Implementations of the LMT heuristic for minimum weight triangulation. In SCG'98: Proceedings of the 14th Annual Symposium on Computational Geometry. ACM, New York, 96--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Belleville, P., Keil, M., McAllister, M., and Snoeyink, J. 1996. On computing edges that are in all minimum-weight triangulations. In SCG'96: Proceedings of the 12th Annual Symposium on Computational Geometry. ACM, New York, 507--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bern, M., Edelsbrunner, H., Eppstein, D., Mitchell, S., and Tan, T. S. 1993. Edge insertion for optimal triangulations. Discrete Comput. Geom. 10, 1, 47--65.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bern, M. W., and Eppstein, D. 1992. Mesh generation and optimal triangulation. In Computing in Euclidean Geometry, D.-Z. Du and F. K.-M. Hwang, Eds. Number 1 in Lecture Notes Series on Computing. World Scientific, River Edge, NJ, 23--90.Google ScholarGoogle Scholar
  7. Bern, M. W., and Eppstein, D. 1996. Approximation algorithms for geometric problems. In Approximation Algorithms for NP-hard Problems, D. Hochbaum, Ed. PWS Publishing, Boston, MA, Chap. 8, 296--345. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Blömer, J. 1991. Computing sums of radicals in polynomial time. In Proceedings of the 32nd Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 670--677. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bose, P., Devroye, L., and Evans, W. S. 2002. Diamonds are not a minimum weight triangulation's best friend. Int. J. Comput. Geom. Appl. 12, 6, 445--454.Google ScholarGoogle ScholarCross RefCross Ref
  10. Cheng, S.-W., Golin, M., and Tsang, J. 1995. Expected case analysis of β-skeletons with applications to the construction of minimum-weight triangulations. In Proceedings of the 7th Canadian Conference on Computational Geometry (Quebec City, Que., Canada). 279--284.Google ScholarGoogle Scholar
  11. Cheng, S.-W., Katoh, N., and Sugai, M. 1996. A study of the LMT-skeleton. In ISAAC '96: Proceedings of the 7th International Symposium on Algorithms and Computation (Osaka, Japan). Lecture Notes in Computer Science, vol. 1178. Springer-Verlag, New York, 256--265. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cheng, S.-W., and Xu, Y.-F. 1996. Approaching the largest β-skeleton within a minimum weight triangulation. In SCG'96: Proceedings of the 12th Annual Symposium on Computational geometry. ACM, New York, 196--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Das, G., and Joseph, D. 1989. Which triangulations approximate the complete graph? In Proceedings of the International Symposium on Optimal Algorithms. Lecture Notes in Computer Science, vol. 401. Springer-Verlag, New York, 168--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. 2000. Computational Geometry: Algorithms and Applications, 2 ed. Springer Verlag, Berlin, Heidelberg, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dickerson, M. T., Keil, J. M., and Montague, M. H. 1997. A large subgraph of the minimum weight triangulation. Disc. Comput. Geom. 18, 3, 289--304.Google ScholarGoogle ScholarCross RefCross Ref
  16. Drysdale, R., Rote, G., and Aichholzer, O. 1995. A simple linear time greedy triangulation algorithm for uniformly distributed points. Tech. Rep. IIG-408, Institute for Information Processing, Technische Universität Graz.Google ScholarGoogle Scholar
  17. Drysdale, R. L., McElfresh, S., and Snoeyink, J. S. 2001. On exclusion regions for optimal triangulations. Disc. Appl. Math. 109, 1-2, 49--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Düppe, R.-D., and Gottschalk, H.-J. 1970. Automatische Interpolation von Isolinien bei willkürlich verteilten Stützpunkten. Allgemeine Vermessungs-Nachrichten 77, 10, 423--426.Google ScholarGoogle Scholar
  19. Edelsbrunner, H., Tan, T. S., and Waupotitsch, R. 1992. An O(n2log n) time algorithm for the minmax angle triangulation. SIAM J. Sci. Statist. Comput. 13, 4, 994--1008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Eppstein, D. 1994. Approximating the minimum weight Steiner triangulation. Disc. Comput. Geometry 11, 2, 163--191.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Garey, M. R., and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gilbert, P. D. 1979. New results in planar triangulations. Tech. Rep. R--850, Univ. Illinois Coordinated Science Lab.Google ScholarGoogle Scholar
  23. Hoffmann, M., and Okamoto, Y. 2006. The minimum weight triangulation problem with few inner points. Comput. Geom. Theory Appl. 34, 3, 149--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Johnson, D. S. 2005. The NP-completeness column. ACM Trans. Algorithms 1, 1, 160--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Keil, J. M. 1994. Computing a subgraph of the minimum weight triangulation. Comput. Geom. Theory Appl. 4, 1, 13--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kellerer, H., Pferschy, U., and Pisinger, D. 2007. Knapsack Problems. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  27. Kirkpatrick, D. G. 1980. A note on Delaunay and optimal triangulations. Inf. Process. Lett. 10, 3, 127--128.Google ScholarGoogle ScholarCross RefCross Ref
  28. Klincsek, G. T. 1980. Minimal triangulations of polygonal domains. In Combinatorics 79 (Proc. Colloq., Univ. Montréal, 1979), Part II, M. Deza and I. G. Rosenberg, Eds. Ann. Discrete Math. 9, 121--123.Google ScholarGoogle Scholar
  29. Knuth, D. E., and Raghunathan, A. 1992. The problem of compatible representatives. SIAM J. Disc. Math. 5, 3, 422--427. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kyoda, Y., Imai, K., Takeuchi, F., and Tajima, A. 1997. A branch-and-cut approach for minimum weight triangulation. In ISAAC '97: Proceedings of the 8th International Symposium on Algorithms and Computation (Singapore). Lecture Notes in Computer Science, vol. 1350. Springer-Verlag, New York, 384--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Levcopoulos, C. 1987. An Ω(&sqrt;n) lower bound for the nonoptimality of the greedy triangulation. Inf. Process. Lett. 25, 4, 247--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Levcopoulos, C., and Krznaric, D. 1996. Quasi-greedy triangulations approximating the minimum weight triangulation. In SODA '96: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, 392--401. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lichtenstein, D. 1982. Planar formulae and their uses. SIAM J. Comput. 11, 2, 329--343.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Lloyd, E. L. 1977. On triangulations of a set of points in the plane. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science (Providence, R.I.). IEEE Computer Society, Press, Los Alamitos, CA, 228--240.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Manacher, G. K., and Zobrist, A. L. 1979. Neither the greedy nor the Delaunay triangulation of a planar point set approximates the optimal triangulation. Inf. Process. Lett. 9, 1, 31--34.Google ScholarGoogle ScholarCross RefCross Ref
  36. Mulzer, W., and Rote, G. 2006. Minimum weight triangulation is NP-hard. In SCG '06: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry. ACM, New York, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Mulzer, W., and Rote, G. 2007. Minimum-weight triangulation is NP-hard. Tech. Rep. B05-23 (revised), Sept. 2007, Freie Universität Berlin, Institut für Informatik. arXiv:cs/0601002.Google ScholarGoogle Scholar
  38. Plaisted, D. A., and Hong, J. 1987. A heuristic triangulation algorithm. J. Algorithms 8, 5, 405--437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Remy, J., and Steger, A. 2006. A quasi-polynomial time approximation scheme for minimum weight triangulation. In STOC '06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing. ACM Press, New York, 316--325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Schaefer, T. J. 1978. The complexity of satisfiability problems. In STOC '78: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing. ACM, New York, 216--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Schwarzkopf, O. 1995. The extensible drawing editor Ipe. In SCG '95: Proceedings of the Eleventh Annual Symposium on Computational Geometry. ACM, New York, 410--411. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Shamos, M. I., and Hoey, D. 1975. Closest-point problems. In Proceedings of the 16th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 151--162.Google ScholarGoogle Scholar
  43. Wang, C. A., and Yang, B. 2001. A lower bound for β-skeleton belonging to minimum weight triangulations. Comput. Geom. Theory Appl. 19, 1, 35--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Yang, B.-T., Xu, Y.-F., and You, Z. 1994. A chain decomposition algorithm for the proof of a property on minimum weight triangulations. In ISAAC '94: Proceedings of the 5th International Symposium on Algorithms and Computation. Lecture Notes in Computer Science, vol. 834. Springer-Verlag, New York, 423--427. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Minimum-weight triangulation is NP-hard

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 55, Issue 2
        May 2008
        282 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/1346330
        Issue’s Table of Contents

        Copyright © 2008 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 May 2008
        • Revised: 1 December 2007
        • Accepted: 1 December 2007
        • Received: 1 September 2007
        Published in jacm Volume 55, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Pre-selected

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader