skip to main content
research-article

PTIME: Personalized assistance for calendaring

Published:15 July 2011Publication History
Skip Abstract Section

Abstract

In a world of electronic calendars, the prospect of intelligent, personalized time management assistance seems a plausible and desirable application of AI. PTIME (Personalized Time Management) is a learning cognitive assistant agent that helps users handle email meeting requests, reserve venues, and schedule events. PTIME is designed to unobtrusively learn scheduling preferences, adapting to its user over time. The agent allows its user to flexibly express requirements for new meetings, as they would to an assistant. It interfaces with commercial enterprise calendaring platforms, and it operates seamlessly with users who do not have PTIME. This article overviews the system design and describes the models and technical advances required to satisfy the competing needs of preference modeling and elicitation, constraint reasoning, and machine learning. We further report on a multifaceted evaluation of the perceived usefulness of the system.

References

  1. Adomavicius, G. 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Engin. 17, 6, 734--749. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bana e Costa, C. A. and Vansnick, J.-C. 1999. The MACBETH approach: Basic ideas, software and an application. In Advances in Decision Analysis, N. Meskens and M. Roubens, Eds. Kluwer Academic Publishers, London, 131--157.Google ScholarGoogle Scholar
  3. Beard, D., Palaniappan, M., Humm, A., Banks, D., Nair, A., and Shan, Y.-P. 1990. A visual calendar for scheduling group meetings. In Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW'90). 279--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Berry, P. M., Conley, K., Gervasio, M., Peintner, B., Uribe, T., and Yorke-Smith, N. 2006. Deploying a personalized time management agent. In Proceedings of the International Conference on Autonomous Agents and MultiAgent Systems (AAMAS'06), Industrial Track. 1564--1571. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Berry, P. M., Gervasio, M., Peintner, B., and Yorke-Smith, N. 2007. Balancing the needs of personalization and reasoning in a user-centric scheduling assistant. Tech. note 561, Artificial Intelligence Center, SRI International.Google ScholarGoogle Scholar
  6. Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., and Poole, D. 2004. Preference-Based constrained optimization with CP-Nets. Comput. Intell. 20, 137--157.Google ScholarGoogle ScholarCross RefCross Ref
  7. Brzozowski, M., Carattini, K., Klemmer, S. R., Mihelich, P., Hu, J., and Ng, A. Y. 2006. groupTime: Preference-Based group scheduling. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI'06). 1047--1056. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dubus, J.-P., Gonzales, C., and Perny, P. 2009. Choquet optimization using gai networks for multiagent/multicriteria decision-making. In Proceedings of the International Conference on Algorithmic Decision Theory (ADT'09). 377--389. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ehrgott, M. and Gandibleux, X., Eds. 2002. Multiple Criteria Optimization: State of the Art Annotated Bibliographic Survey. Kluwer Academic Publishers, Boston, MA.Google ScholarGoogle Scholar
  10. Faulring, A. and Myers, B. A. 2005. Enabling rich human-agent interaction for a calendar scheduling agent. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI'05). 1367--1370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fiechter, C.-N. and Rogers, S. 2000. Learning subjective functions with large margins. InProceedings of the International Conference on Machine Learning (ICML'00). 287--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fishburn, P. 1967. Interdependence and additivity in multivariate, unidimensional expected utility theory. Int. Econ. Rev. 8, 335--342.Google ScholarGoogle ScholarCross RefCross Ref
  13. Focacci, F. and Godard, D. 2002. A practical approach to multi-criteria optimization problems in constraint programming. In Proceedings of the Workshop on Constraint Programming, Artificial Intelligence and Operations Research (CP-AI-OR'02). 65--75.Google ScholarGoogle Scholar
  14. Garrido, L., Brena, R., and Sycara, K. 2000. Multiple negotiation among agents for a distributed meeting scheduler. In Proceedings of MAS'00 Conference. 55--72.Google ScholarGoogle Scholar
  15. Gavanelli, M. 2002. An algorithm for multi-criteria optimization in CSPs. In Proceedings of the European Conference on Artificial Intelligence (ECAI'02). 136--140.Google ScholarGoogle Scholar
  16. Gervasio, M. T., Moffitt, M. D., Pollack, M. E., Taylor, J. M., and Uribe, T. E. 2005. Active preference learning for personalized calendar scheduling assistance. In Proceedings of the International Conference on Intelligent User Interfaces (IUI'05). 90--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gervet, C., Caseau, Y., and Montaut, D. 1999. On refining ill-defined constraint problems: A case study in iterative prototyping. In Proceedings of the International Conference on the Practical Application of Constraint Technologies and Logic Programming (PACLP'99). 255--275.Google ScholarGoogle Scholar
  18. Glass, A., McGuinness, D. L., and Wolverton, M. 2008. Toward establishing trust in adaptive agents. In Proceedings of the International Conference on Intelligent User Interfaces (IUI'08). 227--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Goldsmith, J. and Junker, U., Eds. 2009. AI Magazine Special Issue on Preferences 29.Google ScholarGoogle Scholar
  20. Grabisch, M., Murofushi, T., and Sugeno, M., Eds. 2000. Fuzzy Measures and Integrals: Theory and Applications. Physica Verlag, Heidelberg.Google ScholarGoogle Scholar
  21. Haynes, T., Sen, S., Arora, N., and Nadella, R. 1997. An automated meeting scheduling system that utilizes user preferences. In Proceedings of the Agents'97 Conference. 308--315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Higa, K., Shin, B., and Sivakumar, V. 1996. Meeting scheduling: An experimental investigation. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. 2023--2028.Google ScholarGoogle Scholar
  23. Hogg, R. V. and Craig, A. T. 1995. Introduction to Mathematical Statistics. Macmillan, New York.Google ScholarGoogle Scholar
  24. Joachims, T. 2002. Optimizing search engines using clickthrough data. In Proceedings of the International SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'02). 133--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Junker, U. 2002. Preference-Based search and multi-criteria optimization. In Proceedings of the National Conference on Artficial Intelligence (AAAI'02). 34--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Keeney, R. L. and Raiffa, H. 1993. Decisions with Multiple Objectives 2nd Ed. Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  27. Kojadinovic, I. 2007. Minimum variance capacity identification. Euro. J. Oper. Res. 177, 1, 498--514.Google ScholarGoogle ScholarCross RefCross Ref
  28. Kozierok, R. and Maes, P. 1993. A learning interface agent for scheduling meetings. In Proceedings of the International Conference on Intelligent User Interfaces (IUI'93). 81--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Krzywicki, A., Wobcke, W., and Wong, A. 2010. An adaptive calendar assistant using pattern mining for user preference modelling. In Proceedings of the International Conference on Intelligent User Interfaces (IUI'10). 71--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Labreuche, C. and Grabisch, M. 2003. The Choquet integral for the aggregation of interval scales in multicriteria decision making. Fuzzy Sets Syst. 137, 1, 11--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Labreuche, C. and Huede, F. L. 2005. MYRIAD: A tool for preference modeling application to multi-objective optimization. In Proceedings of the CP'05 Workshop on Preferences and Soft Constraints.Google ScholarGoogle Scholar
  32. Labreuche, C. and Huede, F. L. 2006. Inconsistencies in the determination of a capacity. In Proceedings of the ECAI'06 Multidisciplinary Workshop on Advances in Preference Handling.Google ScholarGoogle Scholar
  33. Le Huede, F., Grabisch, M., Labreuche, C., and Saveant, P. 2006. Mcs: A new algorithm for multicriteria optimisation in constraint programming. Ann. Oper. Res. 147, 1, 143--174.Google ScholarGoogle ScholarCross RefCross Ref
  34. Marichal, J.-L. and Roubens, M. 2000. Determination of weights of interacting criteria from a reference set. Euro. J. Oper. Res. 124, 3, 641--650.Google ScholarGoogle ScholarCross RefCross Ref
  35. Meyers, L. S., Gamst, G. C., Guarino, A. J., Guarino, A. J., and Gamst, G. 2005. Applied Multivariate Research. Sage Publications, Thousand Oaks, CA.Google ScholarGoogle Scholar
  36. Mitchell, T., Caruana, R., Freitag, D., McDermott, J., and Zabowski, D. 1994. Experience with a learning personal assistant. Comm. ACM 37, 7, 80--91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Moffitt, M. D., Peintner, B., and Yorke-Smith, N. 2006. Multi-Criteria optimization of temporal preferences. In Proceedings of the CP'06 Workshop on Preferences and Soft Constraints.Google ScholarGoogle Scholar
  38. Moffitt, M. D. and Pollack, M. E. 2006. Temporal preference optimization as weighted constraint satisfaction. In Proceedings of the National Conference on Artificial Intelligence (AAAI'06). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Myers, K. L., Berry, P. M., Blythe, J., Conley, K., Gervasio, M., McGuinness, D., Morley, D., Pfeffer, A., Pollack, M., and Tambe, M. 2007. An intelligent personal assistant for task and time management. AI Mag. 28, 2, 47--61.Google ScholarGoogle Scholar
  40. Oh, J. and Smith, S. F. 2005. Learning user preferences in distributed calendar scheduling. In Practice and Theory of Automated Timetabling V. Lecture Notes in Computer Science, vol. 3616. Springer, 169--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ozturk, M., Tsoukias, A., and Vincke, P. 2005. Preference modelling. InState of Art in Multiple Criteria Decision Analysis, M. Ehrgott et al., Eds., Springer, New York, 27--72.Google ScholarGoogle Scholar
  42. Palen, L. 1999. Social, individual and technological issues for groupware calendar systems. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI'99). 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Payne, S. J. 1993. Understanding calendar use. Hum.-Comput. Interact. 8, 2, 83--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Peintner, B. and Pollack, M. E. 2004. Low-Cost addition of preferences to DTPs and TCSPs. InProceedings of the National Conference on Artificial Intelligence (AAAI'04). 723--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Peintner, B., Viappiani, P., and Yorke-Smith, N. 2009. Preferences in interactive systems: Technical challenges and case studies. AI Mag. 29, 4, 13--24.Google ScholarGoogle ScholarCross RefCross Ref
  46. PeopleCube, Inc. 2011. Meeting Maker. http://www.peoplecube.com/products-other-meeting-maker.htm.Google ScholarGoogle Scholar
  47. Poulton, E. C. 1994. Behavioral Decision Theory. Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  48. Refanidis, I. 2007. Managing personal tasks with time constraints and preferences. In Proceedings of the International Conference on Autonomous Planning and Scheduling (ICAPS'07). 272--279.Google ScholarGoogle Scholar
  49. Saaty, T. L. 1980. The Analytic Hierarchy Process. McGraw-Hill, New York.Google ScholarGoogle Scholar
  50. Steinfeld, A., Bennett, R., Cunningham, K., Lahut, M., Quinones, P., Wexler, D., Siewiorek, D., Hayes, J., Cohen, P., Fitzgerald, J., Hansson, O., Pool, M., and Drummond, M. 2007. Evaluation of an integrated multi-task machine learning system with humans in the loop. In Proceedings of the NIST Performance Metrics for Intelligent Systems Workshop (PerMIS'07). 182--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Tullio, J., Goecks, J., Mynatt, E., and Nguyen, D. 2002. Augmenting shared personal calendars. In Proceedings of the ACM Symposium on User Interface Software and Technology (UIST'02). 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Van Schaik, P. and Jing, J. 2005. Five psychometric scales for online measurement of the quality of human-computer interaction in web sites. Int. J. Hum.-Comput. Interact. 18, 3, 309--322.Google ScholarGoogle ScholarCross RefCross Ref
  53. Viappiani, P., Faltings, B., and Pu, P. 2006. Preference-Based search using example-critiquing with suggestions. J. Artif. Intell. Res. 27, 465--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Weber, J. S. and Pollack, M. E. 2007. Entropy-Driven online active learning for interactive calendar management. In Proceedings of the International Conference on Intelligent User Interfaces (IUI'07). 141--150. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. PTIME: Personalized assistance for calendaring

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Intelligent Systems and Technology
          ACM Transactions on Intelligent Systems and Technology  Volume 2, Issue 4
          July 2011
          272 pages
          ISSN:2157-6904
          EISSN:2157-6912
          DOI:10.1145/1989734
          Issue’s Table of Contents

          Copyright © 2011 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 15 July 2011
          • Revised: 1 February 2011
          • Accepted: 1 February 2011
          • Received: 1 December 2010
          Published in tist Volume 2, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader