skip to main content
research-article

Sketch-based Dynamic Illustration of Fluid Systems

Published:12 December 2011Publication History
Skip Abstract Section

Abstract

This paper presents a lightweight sketching system that enables interactive illustration of complex fluid systems. Users can sketch on a 2.5-dimensional (2.5D) canvas to design the shapes and connections of a fluid circuit. These input sketches are automatically analyzed and abstracted into a hydraulic graph, and a new hybrid fluid model is used in the background to enhance the illustrations. The system provides rich simple operations for users to edit the fluid system incrementally, and the new internal flow patterns can be simulated in real time. Our system is used to illustrate various fluid systems in medicine, biology, and engineering. We asked professional medical doctors to try our system and obtained positive feedback from them.

Skip Supplemental Material Section

Supplemental Material

a134-zhu.avi

avi

63 MB

References

  1. Almeder, C. 1999. Hydrodynamic Modelling and Simulation of the Human Arterial Blood Flow. PhD thesis, Vienna University of Technology.Google ScholarGoogle Scholar
  2. Angelidis, A., Neyret, F., Singh, K., and Nowrouzezahrai, D. 2006. A controllable, fast and stable basis for vortex based smoke simulation. In Proceedings of SCA '06, 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bridson, R. 2008. Fluid Simulation for Computer Graphics. A K Peters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cabral, B., and Leedom, L. C. 1993. Imaging vector fields using line integral convolution. In Proceedings of SIGGRAPH '93, 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cohen, J. M., Tariq, S., and Green, S. 2010. Interactive fluid-particle simulation using translating eulerian grids. In Proceedings of I3D '10, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Davis, R. C., Colwell, B., and Landay, J. A. 2008. K-sketch: a 'kinetic' sketch pad for novice animators. In Proceeding of CHI '08, 413--422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Davis, R. 2007. Magic paper: Sketch-understanding research. IEEE Computer 40, 9, 34--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ebert, D. S., Sousa, M. C., Gooch, A., and Stredney, D. 2005. Computer-generated medical, technical, and scientific illustration. In ACM SIGGRAPH 2005 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Formaggia, L., and Veneziani, A. 2003. Reduced and multi-scale models for the human cardiovascular system. Lecture notes VKI, Lecture Series 2003-07 MOX Report 21.Google ScholarGoogle Scholar
  10. Gingold, Y., Igarashi, T., and Zorin, D. 2009. Structured annotations for 2d-to-3d modeling. ACM Trans. Graph. 28, 5, 148:1--148:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Igarashi, T., Matsuoka, S., and Tanaka, H. 1999. Teddy: A sketching interface for 3d freeform design. In Proceedings of SIGGRAPH '99, 409--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3, 1134--1141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ihm, I., Kang, B., and Cha, D. 2004. Animation of reactive gaseous fluids through chemical kinetics. In Proceedings of SCA '04, 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ijiri, T., Owada, S., and Igarashi, T. 2006. Seamless integration of initial sketching and subsequent detail editing in flower modeling. In Computer Graphics Forum, vol. 25, 617--624.Google ScholarGoogle ScholarCross RefCross Ref
  15. Irving, G., Guendelman, E., Losasso, F., and Fedkiw, R. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. 25, 3, 805--811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kang, N., Park, J., Noh, J., and Shin, S. Y. 2010. A hybrid approach to multiple fluid simulation using volume fractions. Computer Graphics Forum 29, 2, 685--694.Google ScholarGoogle ScholarCross RefCross Ref
  17. Laramee, R. S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F. H., and Weiskopf, D. 2004. The state of the art in flow visualization: Dense and texture-based techniques. Computer Graphics Forum 23, 2, 203--221.Google ScholarGoogle ScholarCross RefCross Ref
  18. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4, 99:1--99:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. McCann, J., and Pollard, N. 2009. Local layering. ACM Trans. Graph. 28, 3, 84:1--84:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. McLouglin, T., Laramee, R. S., Peikert, R., Post, F. H., and Chen, M. 2010. Over two decades of integration-based geometric flow visualization. Computer Graphics Forum 29, 6, 1807--1829.Google ScholarGoogle ScholarCross RefCross Ref
  21. Mitra, N. J., Yang, Y.-L., Yan, D.-M., Li, W., and Agrawala, M. 2010. Illustrating how mechanical assemblies work. ACM Trans. Graph. 29, 4, 58:1--58:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mittal, R., and Iaccarino, G. 2005. Immersed boundary methods. Annual Review of Fluid Mechanics 37, 1, 239--261.Google ScholarGoogle ScholarCross RefCross Ref
  23. Nobile, F. 2009. Coupling strategies for the numerical simulation of blood flow in deformable arteries by 3d and 1d models. Mathematical and Computer Modelling 11--12, 2152--2160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Okabe, M., Anjyo, K., Igarashi, T., and Seidel, H.-P. 2009. Animating pictures of fluid using video examples. Computer Graphics Forum 28, 2, 677--686.Google ScholarGoogle ScholarCross RefCross Ref
  25. Post, F. H., Vrolijk, B., Hauser, H., Laramee, R. S., and Doleisch, H. 2003. The state of the art in flow visualisation: Feature extraction and tracking. Computer Graphics Forum 22, 4, 775--792.Google ScholarGoogle ScholarCross RefCross Ref
  26. Runge, M. S., and Ohman, M. 2004. Netter's Cardiology. Icon Learning Systems, New Jersey.Google ScholarGoogle Scholar
  27. Schroeder, D., Coffey, D., and D. Keefe. 2010. Drawing with the flow: A sketch-based interface for illustrative visualization of 2d vector fields. In Proceedings of SBIM '2010, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sewall, J., Wilkie, D., Merrell, P., and Lin, M. C. 2010. Continuum traffic simulation. Computer Graphics Forum 29, 2, 439--448.Google ScholarGoogle ScholarCross RefCross Ref
  29. Stam, J. 1999. Stable fluids. In Proceedings of SIGGRAPH '99, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Turk, G., and Banks, D. 1996. Image-guided streamline placement. In Proceedings of SIGGRAPH '96, 453--460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Vainio, T., Hakkarainen, K., and Levonen, J. 2005. Visualizing complex medical phenomena for medical students. In CHI '05 extended abstracts, 1857--1860. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yu, Q., Neyret, F., Bruneton, E., and Holzschuch, N. 2009. Scalable real-time animation of rivers. Computer Graphics Forum 28, 2, 239--248.Google ScholarGoogle ScholarCross RefCross Ref
  33. Zeleznik, R. C., Herndon, K. P., and Hughes, J. F. 1996. Sketch: an interface for sketching 3d scenes. In Proceedings of SIGGRAPH '96, 163--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector field design on surfaces. ACM Trans. Graph. 25, 4, 1294--1326. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Sketch-based Dynamic Illustration of Fluid Systems

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader