skip to main content
research-article

Sparse methods for biomedical data

Published:10 December 2012Publication History
Skip Abstract Section

Abstract

Following recent technological revolutions, the investigation of massive biomedical data with growing scale, diversity, and complexity has taken a center stage in modern data analysis. Although complex, the underlying representations of many biomedical data are often sparse. For example, for a certain disease such as leukemia, even though humans have tens of thousands of genes, only a few genes are relevant to the disease; a gene network is sparse since a regulatory pathway involves only a small number of genes; many biomedical signals are sparse or compressible in the sense that they have concise representations when expressed in a proper basis. Therefore, finding sparse representations is fundamentally important for scientific discovery. Sparse methods based on the '1 norm have attracted a great amount of research efforts in the past decade due to its sparsity-inducing property, convenient convexity, and strong theoretical guarantees. They have achieved great success in various applications such as biomarker selection, biological network construction, and magnetic resonance imaging. In this paper, we review state-of-the-art sparse methods and their applications to biomedical data.

References

  1. M. Afonso, J. Bioucas-Dias, and M. Figueiredo. An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Transactions on Image Processing, 20:681--695, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243--272, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. F. R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179{1225, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak. Compressive wireless sensing. In International Conference on Information Processing in Sensor Networks, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. O. Banerjee, L. El Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. The Journal of Machine Learning Research, 9:485--516, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, 24(4):118--121, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  7. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15:1373{1396, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Blaimer, F. Breuer, M. Muller, R. Heidemann, M. A. Griswold, and P. M. Jakob. SMASH, SENSE, PILS, GRAPPA. Top Magn Reson Imaging, 15:223--236, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  9. H. Bondell and B. Reich. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar. Biometrics, 64(1):115--123, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3:1--122, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. P. Bühlmann. Statistical significance in highdimensional linear models. Arxiv preprint arXiv:1202.1377v1, 2012.Google ScholarGoogle Scholar
  12. R. Busse, K. Wang, J. Holmes, J. Brittain, and F. Korosec. Optimization of variable-density cartesian sampling for time-resolved imaging. In International Society for Magnetic Resonance in Medicine, 2009.Google ScholarGoogle Scholar
  13. E. Candés and J. Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions. Foundations of Computational Mathematics, 6(2):227--254, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E. Candés, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans- actions on Information Theory, 52(2):489--509, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. E. Candés and T. Tao. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12):5406--5425, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. E. Candàs and M. Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2):21--30, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  17. S. Carroll, J. Grenier, and S. Weatherbee. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. 2nd edition. Malden, MA: Blackwell Pub, 2005.Google ScholarGoogle Scholar
  18. W. Chu, Z. Ghahramani, F. Falciani, and D. Wild. Biomarker discovery in microarray gene expression data with gaussian processes. Bioinformatics, 21(16):3385--3393, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. H. Chuang, E. Lee, Y. Liu, D. Lee, and T. Ideker. Network-based classification of breast cancer metastasis. Molecular systems biology, 3:140, 2007.Google ScholarGoogle Scholar
  20. F. Chung. Spectral Graph Theory. American Mathematical Society, 1997.Google ScholarGoogle Scholar
  21. D. Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodological), 34(2):187--220, 1972.Google ScholarGoogle ScholarCross RefCross Ref
  22. P. Danaher, P.Wang, and D. Daniela. The joint graphical lasso for inverse covariance estimation across multiple classes. Arxiv preprint arXiv:1111.0324, 2011.Google ScholarGoogle Scholar
  23. A. d'Aspremont, L. El Ghaoui, M. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. In NIPS, 2005.Google ScholarGoogle Scholar
  24. D. Donoho. High-dimensional data analysis: The curses and blessings of dimensionality. 2000.Google ScholarGoogle Scholar
  25. D. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52:1289--1306, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Duarte, M. Davenport, M. Wakin, and R. Baraniuk. Sparse signal detection from incoherent projections. In ICASSP, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  27. J. Fan and J. Lv. A selective overview of variable selection in high dimensional feature space. Statistica Sinica, 20:101{148, 2010.Google ScholarGoogle Scholar
  28. J. Friedman, T. Hastie, H. Hoing, and R. Tibshirani. Pathwise coordinate optimization. Annals of Applied Statistics, 1(2):302--332, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  29. J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432--441, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and a sparse group lasso. Technical report, Department of Statistics, Stanford University, 2010.Google ScholarGoogle Scholar
  31. T. Goldstein and S. Osher. The split bregman method for l1-regularized problems. SIAM Journal on Imaging Sciences, 2:323--343, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, and C. D. Bloomfield. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286(5439):531--537, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  33. L. Greengard and J. Lee. Accelerating the nonuniform fast fourier transform. SIAM Review, 46:443{454, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. A. Griswold, P. M. Jakob, R. M. Heidemann, M. Nittka, V. Jellus, J. Wang, K. B., and A. Haase. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 47:1202--1210, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  35. M. A. Griswold, S. Kannengiesser, R. M. Heidemann, J. Wang, and P. M. Jakob. Field-of-view limitations in parallel imaging. Magnetic Resonance in Medicine, 52:1118--1126, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  36. J. Guo, E. Levina, G. Michailidis, and J. Zhu. Joint estimation of multiple graphical models. Biometrika, 98(1):1--15, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  37. M. A. Guttman, P. Kellman, A. J. Dick, R. J. Lederman, and E. R. McVeigh. Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD. Magnetic Resonance in Medicine, 50:315--321, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  38. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1--3):389--422, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, editors. Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley-Liss, 1999.Google ScholarGoogle Scholar
  40. M. S. Hansen, C. Baltes, J. Tsao, S. Kozerke, K. P. Pruessmann, and H. Eggers. k-t BLAST reconstruction from non-cartesian k-t space sampling. Magnetic Resonance in Medicine, 55:85{91, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  41. T. Hrom--adka, M. DeWeese, and A. Zador. Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol, 6(1):e16, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  42. J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. Journal of Machine Learning Research, 12:3371--3412, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. S. Huang, J. Li, L. Sun, J. Liu, T. Wu, K. Chen, A. Fleisher, E. Reiman, and J. Ye. Learning brain connectivity of alzheimer's disease from neuroimaging data. In NIPS, pages 808--816, 2009.Google ScholarGoogle Scholar
  44. L. Jacob, G. Obozinski, and J. Vert. Group lasso with overlap and graph lasso. In ICML, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Journal of Machine Learning Research, 12:2777--2824, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In ICML, 2010.Google ScholarGoogle Scholar
  47. P. Kellman. Parallel imaging: the basics. In ISMRM Educational Course: MR Physics for Physicists, 2004.Google ScholarGoogle Scholar
  48. P. Kellman, F. H. Epstein, and E. R. McVeigh. Adaptive sensitivity encoding incorporating temporal filtering (tsense). Magnetic Resonance in Medicine, 45:846--852, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  49. K. Khare, C. J. Hardy, K. F. King, P. A. Turski, and L. Marinelli. Accelerated MR imaging using compressive sensing with no free parameters. Magnetic Resonance in Medicine, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  50. S. Kim and E. Xing. Statistical estimation of correlated genome associations to a quantitative trait network. PLoS genetics, 5(8):e1000587, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  51. S. Kim and E. P. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In ICML, 2010.Google ScholarGoogle Scholar
  52. K. Koh, S. Kim, and S. Boyd. An interior-point method for large-scale l1-regularized logistic regression. Journal of Machine Learning Research, 8:1519--1555, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. M. Kolar, L. Song, A. Ahmed, and E. Xing. Estimating time-varying networks. The Annals of Applied Statistics, 4(1):94--123, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  54. M. Kolar and E. Xing. On time varying undirected graphs. In AISTAT, 2011.Google ScholarGoogle Scholar
  55. M. Kowalski. Sparse regression using mixed norms. Applied and Computational Harmonic Analysis, 27(3):303--324, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  56. S. Kumar, K. Jayaraman, S. Panchanathan, R. Gurunathan, A. Marti-Subirana, and S. Newfeld. BEST: A novel computational approach for comparing gene expression patterns from early stages of Drosophila melanogaster development. Genetics, 162(4):2037--2047, 2002.Google ScholarGoogle Scholar
  57. P. Lai, M. Lustig, B. A. C., V. S. S., B. P. J., and A. M. Effcient L1SPIRiT reconstruction (ESPIRiT) for highly accelerated 3d volumetric MRI with parallel imaging and compressed sensing. In ISMRM, 2010.Google ScholarGoogle Scholar
  58. P. Lai, M. Lustig, V. S. S., and B. A. C. ESPIRiT (efficient eigenvector-based l1spirit) for compressed sensing parallel imaging - theoretical interpretation and improved robustness for overlapped FOV prescription. In ISMRM, 2011.Google ScholarGoogle Scholar
  59. D. J. Larkman and R. G. Nunes. Parallel magnetic resonance imaging. Physics in Medicine and Biology, 52:R15--55, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  60. C. Li and H. Li. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics, 24(9):1175--1182, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. D. Liang, B. Liu, J. Wang, and L. Ying. Accelerating SENSE using compressed sensing. Magnetic Resonance in Medicine, 62:1574--1584, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  62. H. Liu, M. Palatucci, and J. Zhang. Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. In ICML, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. H. Liu, K. Roeder, and L. Wasserman. Stability approach to regularization selection (StARS) for high dimensional graphical models. In NIPS, 2011.Google ScholarGoogle Scholar
  64. J. Liu, S. Ji, and J. Ye. Multi-task feature learning via effcient '2;1-norm minimization. In UAI, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. J. Liu, S. Ji, and J. Ye. SLEP: Sparse Learning with Effcient Projections. Arizona State University, 2009.Google ScholarGoogle Scholar
  66. J. Liu, J. Rapin, T. Chang, A. Lefebvre, M. Zenge, E. Mueller, and M. S. Nadar. Dynamic cardiac MRI reconstruction with weighted redundant haar wavelets. In ISMRM, 2012.Google ScholarGoogle Scholar
  67. J. Liu, J. Rapin, T. Chang, P. Schmitt, X. Bi, A. Lefebvre, M. Zenge, E. Mueller, and M. S. Nadar. Regularized reconstruction using redundant haar wavelets: A means to achieve high undersampling factors in non-contrast-enhanced 4D MRA. In ISMRM, 2012.Google ScholarGoogle Scholar
  68. J. Liu and J. Ye. Effcient '1='q norm regularization. Arxiv preprint arXiv:1009.4766v1, 2010.Google ScholarGoogle Scholar
  69. J. Liu and J. Ye. Moreau-Yosida regularization for grouped tree structure learning. In NIPS, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. P. Loh and M. Wainwright. High-dimension regression with noisy and missing data: Provable guarantees with non-convexity. In NIPS, 2011.Google ScholarGoogle Scholar
  71. M. Lustig, D. L. Donoho, and J. M. Pauly. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 58:1182{1195, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  72. M. Lustig, P. Lai, M. Murphy, S. Vasanawala, M. Elad, J. Zhang, and J. Pauly. An eigen-vector approach to autocalibrating parallel MRI, where SENSE meets GRAPPA. In ISMRM, 2011.Google ScholarGoogle Scholar
  73. M. Lustig and J. M. Pauly. SPIRiT: Iterative selfconsistent parallel imaging reconstruction from arbitrary k-space. Magnetic Resonance in Medicine, 64:457{471, 2010.Google ScholarGoogle Scholar
  74. M. Marton et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Medicine, 4(11):1293{1301, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  75. R. Mazumder and T. Hastie. Exact covariance thresholding into connected components for large-scale graphical lasso. Arxiv preprint arXiv:1108.3829, 2011.Google ScholarGoogle Scholar
  76. R. Mazumder and T. Hastie. The graphical lasso: New insights and alternatives. Arxiv preprint arXiv:1111.5479, 2011.Google ScholarGoogle Scholar
  77. S. Megason and S. Fraser. Imaging in systems biology. Cell, 130(5):784{795, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  78. L. Meier, S. Geer, and P. Bühlmann. The group lasso for logistic regression. Journal of the Royal Statistical Society: Series B, 70:53{71, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  79. N. Meinshausen and P. Buhlmann. Stability selection. Journal of the Royal Statistical Society: Series B, 72:417--473, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  80. S. Negahban and M. Wainwright. Joint support recovery under high-dimensional scaling: Benefits and perils of '1;1-regularization. In NIPS, pages 1161--1168. 2008.Google ScholarGoogle Scholar
  81. A. Nemirovski. Efficient methods in convex programming. Lecture Notes, 1994.Google ScholarGoogle Scholar
  82. Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, 2004.Google ScholarGoogle Scholar
  83. Y. Nesterov. Gradient methods for minimizing composite objective function. CORE, 2007.Google ScholarGoogle Scholar
  84. A. Ng. Feature selection, '1 vs. '2 regularization, and rotational invariance. In ICML, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection for grouped classification. Technical report, Statistics Department, UC Berkeley, 2007.Google ScholarGoogle Scholar
  86. H. Peng. Bioimage informatics: a new area of engineering biology. Bioinformatics, 24(17):1827{1836, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. J. Peng, J. Zhu, B. A., W. Han, D.-Y. Noh, J. R. Pollack, and P. Wang. Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. Annals of Applied Statistics, 4(1):53--77, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  88. K. Pruessmann, M. Weiger, M. Scheidegger, and P. Boesiger. SENSE: sensitivity endcoding for fast MRI. Magnetic Resonance in Medicine, 42:952--962, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  89. A. Quattoni, X. Carreras, M. Collins, and T. Darrell. An efficient projection for '1;1 regularization. In ICML, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. S. Ramani and J. A. Fessler. Parallel MR image reconstruction using augmented lagrangian methods. IEEE Transactions on Medical Imaging, 30:694--706, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  91. S. Ryali, K. Supekar, D. Abrams, and V. Menon. Sparse logistic regression for whole-brain classification of fMRI data. Neuroimage, 51(2):752--764, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  92. X. Shen, W. Pan, and Y. Zhu. Likelihood-based selection and sharp parameter estimation. Journal of American Statistical Association, 107:223--232, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  93. J. Shi, W. Yin, S. Osher, and P. Sajda. A fast algorithm for large scale '1-regularized logistic regression. Technical report, CAAM TR08-07, 2008.Google ScholarGoogle Scholar
  94. W. Shi, K. Lee, and G. Wahba. Detecting diseasecausing genes by lasso-patternsearch algorithm. BMC Proceedings, 1(Suppl 1):S60, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  95. D. Sodickson and W. Manning. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magnetic Resonance in Medicine, 38:591--603, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  96. N. Städler and P. Buhlmann. Missing values: sparse inverse covariance estimation and an extension to sparse regression. Statistics and Computing, 22:219--235, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. A. Subramanian et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genomewide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43):15545--15550, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  98. R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B, 58(1):267--288, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  99. R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused lasso. Journal Of The Royal Statistical Society Series B, 67(1):91--108, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  100. R. Tibshirani and P. Wang. Spatial smoothing and hot spot detection for cgh data using the fused lasso. Biostatistics, 9(1):18--29, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  101. P. Tomancak, A. Beaton, R. Weiszmann, E. Kwan, S. Shu, S. E. Lewis, S. Richards, M. Ashburner, V. Hartenstein, S. E. Celniker, and G. M. Rubin. Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biology, 3(12):research0088.1--14, 2002.Google ScholarGoogle Scholar
  102. A. Tropp, A. Gilbert, and M. Strauss. Algorithms for simultaneous sparse approximation: part I: Greedy pursuit. Signal Processing, 86(3):572--588, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. M. Uecker, T. Hohage, K. T. Block, and J. Frahm. Image reconstruction by regularized nonlinear inversion - joint estimation of coil sensitivities and image content. Magnetic Resonance in Medicine, 60:674--682, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  104. M. Usman, C. Prieto, T. Schaeter, and P. G. Batchelor. k-t group sparse: A method for accelerating dynamic MRI. Magnetic Resonance in Medicine, 66:1163--1176, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  105. M. T. Vlaardingerbroek and J. A. Boer, editors. Magnetic Resonance Imaging. Spinger, 2004.Google ScholarGoogle Scholar
  106. D. Witten, J. Friedman, and N. Simon. New insights and faster computations for the graphical lasso. Journal of Computational and Graphical Statistics, 20(4):892--900, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  107. T. Wu, Y. Chen, T. Hastie, E. Sobel, and K. Lange. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics, 25(6):714--721, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. S. Xiang, X. Shen, and J. Ye. Effcient sparse group feature selection via nonconvex optimization. Arxiv preprint arXiv:1205.5075, 2012.Google ScholarGoogle Scholar
  109. S. Yang, Z. Pan, X. Shen, P. Wonka, and J. Ye. Fused multiple graphical lasso. Technical Report, Arizona State University, 2012.Google ScholarGoogle Scholar
  110. S. Yang, L. Yuan, Y.-C. Lai, X. Shen, P. Wonka, and J. Ye. Feature grouping and selection over an undirected graph. In KDD, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. J. Ye, M. Farnum, E. Yang, R. Verbeeck, V. Lobanov, N. Raghavan, G. Novak, A. DiBernardo, and V. Narayan. Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. BMC Neurology, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  112. X. Ye, Y. Chen, and F. Huang. Computational acceleration for MR image reconstruction in partially parallel imaging. IEEE Transactions on Medical Imaging, 30:1055--1063, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  113. L. Ying and J. Sheng. Joint image reconstruction and sensitivity estimation in sense (JSENSE). Magnetic Resonance in Medicine, 57:1196--1202, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  114. L. Yuan, Y. Wang, P. Thompson, V. Narayand, and J. Ye. Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage, 61(3):622--632, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  115. L. Yuan, A. Woodard, S. Ji, Y. Jiang, Z.-H. Zhou, S. Kumar, and J. Ye. Learning sparse representations for fruity gene expression pattern image annotation and retrieval. BMC Bioinformatics, 13:107, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  116. M. Yuan, V. R. Joseph, and H. Zou. Structured variable selection and estimation. Annals of Applied Statistics, 3:1738--1757, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  117. M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal Of The Royal Statistical Society Series B, 68(1):49--67, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  118. C.-H. Zhang and S. Zhang. Confidence intervals for low-dimensional parameters with high-dimensional data. Arxiv preprint arXiv:1110.2563v1, 2011.Google ScholarGoogle Scholar
  119. T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. Journal of Machine Learning Research, 11:1081--1107, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable selection. Annals of Statistics, 37(6A):3468--3497, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  121. L. Zhong and J. Kwok. Efficient sparse modeling with automatic feature grouping. ICML, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. S. Zhou, J. Laferty, and L. Wasserman. Time varying undirected graphs. COLT, 2008.Google ScholarGoogle Scholar
  123. J. Zhu and T. Hastie. Classification of gene microarrays by penalized logistic regression. Biostatistics, 5(3):427--443, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  124. J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In Neural Information Processing Systems, pages 49--56, 2003.Google ScholarGoogle Scholar
  125. Y. Zhu, X. Shen, and W. Pan. Simultaneous grouping pursuit and feature selection in regression over an undirected graph. Preprint, 2012.Google ScholarGoogle Scholar
  126. H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of The Royal Statistical Society Series B, 67(2):301--320, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  127. H. Zou, T. Hastie, and R. Tibshirani. Sparse principle component analysis. Journal of Computational and Graphical Statistics, 15(2):262--286, 2006.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Sparse methods for biomedical data

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM SIGKDD Explorations Newsletter
      ACM SIGKDD Explorations Newsletter  Volume 14, Issue 1
      June 2012
      55 pages
      ISSN:1931-0145
      EISSN:1931-0153
      DOI:10.1145/2408736
      Issue’s Table of Contents

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 December 2012

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader