skip to main content
research-article

Scene reconstruction from high spatio-angular resolution light fields

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

This paper describes a method for scene reconstruction of complex, detailed environments from 3D light fields. Densely sampled light fields in the order of 109 light rays allow us to capture the real world in unparalleled detail, but efficiently processing this amount of data to generate an equally detailed reconstruction represents a significant challenge to existing algorithms. We propose an algorithm that leverages coherence in massive light fields by breaking with a number of established practices in image-based reconstruction. Our algorithm first computes reliable depth estimates specifically around object boundaries instead of interior regions, by operating on individual light rays instead of image patches. More homogeneous interior regions are then processed in a fine-to-coarse procedure rather than the standard coarse-to-fine approaches. At no point in our method is any form of global optimization performed. This allows our algorithm to retain precise object contours while still ensuring smooth reconstructions in less detailed areas. While the core reconstruction method handles general unstructured input, we also introduce a sparse representation and a propagation scheme for reliable depth estimates which make our algorithm particularly effective for 3D input, enabling fast and memory efficient processing of "Gigaray light fields" on a standard GPU. We show dense 3D reconstructions of highly detailed scenes, enabling applications such as automatic segmentation and image-based rendering, and provide an extensive evaluation and comparison to existing image-based reconstruction techniques.

Skip Supplemental Material Section

Supplemental Material

References

  1. Adelson, E. H., and Wang, J. Y. A. 1992. Single lens stereo with a plenoptic camera. IEEE PAMI 14, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ayvaci, A., Raptis, M., and Soatto, S. 2012. Sparse occlusion detection with optical flow. IJCV 97, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Basha, T., Avidan, S., Hornung, A., and Matusik, W. 2012. Structure and motion from scene registration. In CVPR.Google ScholarGoogle Scholar
  4. Beeler, T., Bickel, B., Beardsley, P. A., Sumner, B., and Gross, M. H. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graph. 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bishop, T. E., and Favaro, P. 2010. Full-resolution depth map estimation from an aliased plenoptic light field. In ACCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bishop, T., Zanetti, S., and Favaro, P. 2009. Light field superresolution. In ICCP.Google ScholarGoogle Scholar
  7. Bleyer, M., Rother, C., Kohli, P., Scharstein, D., and Sinha, S. 2011. Object stereo --- joint stereo matching and object segmentation. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bolles, R. C., Baker, H. H., and Marimont, D. H. 1987. Epipolar-plane image analysis: An approach to determining structure from motion. IJCV 1, 1.Google ScholarGoogle ScholarCross RefCross Ref
  9. Buehler, C., Bosse, M., McMillan, L., Gortler, S. J., and Cohen, M. F. 2001. Unstructured lumigraph rendering. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Čech, J., and Šára, R. 2007. Efficient sampling of disparity space for fast and accurate matching. In CVPR.Google ScholarGoogle Scholar
  11. Chai, J., Chan, S.-C., Shum, H.-Y., and Tong, X. 2000. Plenoptic sampling. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chen, W.-C., Bouguet, J.-Y., Chu, M. H., and Grzeszczuk, R. 2002. Light field mapping: Efficient representation and hardware rendering of surface light fields. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Comaniciu, D., and Meer, P. 2002. Mean shift: A robust approach toward feature space analysis. IEEE PAMI 24, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Criminisi, A., Kang, S. B., Swaminathan, R., Szeliski, R., and Anandan, P. 2005. Extracting layers and analyzing their specular properties using epipolar-plane-image analysis. CVIU 97, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Davis, A., Levoy, M., and Durand, F. 2012. Unstructured light fields. Comput. Graph. Forum 31, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Duda, R., Hart, P., and Stork, D. 1995. Pattern Classification and Scene Analysis, 2nd ed. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fitzgibbon, A., Wexler, Y., and Zisserman, A. 2005. Image-based rendering using image-based priors. IJCV 63, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Furukawa, Y., and Ponce, J. 2010. Accurate, dense, and robust multi-view stereopsis. IEEE PAMI 32, 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. 2010. Towards Internet-scale multi-view stereo. In CVPR.Google ScholarGoogle Scholar
  20. Fusiello, A., Trucco, E., and Verri, A. 2000. A compact algorithm for rectification of stereo pairs. Mach. Vis. Appl. 12, 1. Geiger, A., Roser, M., and Urtasun, R. 2010. Efficient large-scale stereo matching. In ACCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Georgiev, T., and Lumsdaine, A. 2010. Reducing plenoptic camera artifacts. Comp. Graph. Forum 29, 6.Google ScholarGoogle ScholarCross RefCross Ref
  22. Goldlücke, B., and Magnor, M. 2003. Joint 3D-reconstruction and background separation in multiple views using graph cuts. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996. The Lumigraph. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hirschmüller, H. 2005. Accurate and efficient stereo processing by semi-global matching and mutual information. In CVPR.Google ScholarGoogle Scholar
  25. Humayun, A., Mac Aodha, O., and Brostow, G. 2011. Learning to find occlusion regions. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Isaksen, A., McMillan, L., and Gortler, S. J. 2000. Dynamically reparameterized light fields. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kang, S. B., and Szeliski, R. 2004. Extracting view-dependent depth maps from a collection of images. IJCV 58, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kolmogorov, V., and Zabih, R. 2001. Computing visual correspondence with occlusions via graph cuts. In ICCV.Google ScholarGoogle Scholar
  29. Levoy, M., and Hanrahan, P. 1996. Light field rendering. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Liang, C.-K., Lin, T.-H., Wong, B.-Y., Liu, C., and Chen, H. H. 2008. Programmable aperture photography: multiplexed light field acquisition. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., and Hanrahan, P. 2005. Light field photography with a hand-held plenoptic camera. Comp. Sci. Techn. Rep. CSTR 2.Google ScholarGoogle Scholar
  32. Rav-Acha, A., Shor, Y., and Peleg, S. 2004. Mosaicing with parallax using time warping. In IVR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Rhemann, C., Hosni, A., Bleyer, M., Rother, C., and Gelautz, M. 2011. Fast cost-volume filtering for visual correspondence and beyond. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Scharstein, D., and Szeliski, R. 2002. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47, 1--3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Schechner, Y. Y., and Kiryati, N. 2000. Depth from defocus vs. stereo: How different really are they? IJCV 39, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Seitz, S. M., and Dyer, C. R. 1999. Photorealistic scene reconstruction by voxel coloring. IJCV 35, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Seitz, S., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. 2006. A comparison and evaluation of multi-view stereo reconstruction algorithms. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Snavely, N., Seitz, S. M., and Szeliski, R. 2008. Modeling the world from Internet photo collections. IJCV 80, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Stich, T., Tevs, A., and Magnor, M. A. 2006. Global depth from epipolar volumes--a general framework for reconstructing non-lambertian surfaces. In 3DPVT. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Sun, X., Mei, X., Jiao, S., Zhou, M., and Wang, H. 2011. Stereo matching with reliable disparity propagation. In 3DIMPVT. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sylwan, S. 2010. The application of vision algorithms to visual effects production. In ACCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Szeliski, R., and Scharstein, D. 2002. Symmetric sub-pixel stereo matching. In ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Vaish, V., Levoy, M., Szeliski, R., Zitnick, C., and Kang, S. 2006. Reconstructing occluded surfaces using synthetic apertures: Stereo, focus and robust measures. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Veeraraghavan, A., Raskar, R., Agrawal, A. K., Mohan, A., and Tumblin, J. 2007. Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Vu, H.-H., Keriven, R., Labatut, P., and Pons, J.-P. 2009. Towards high-resolution large-scale multi-view stereo. In CVPR.Google ScholarGoogle Scholar
  46. Wanner, S., and Goldlücke, B. 2012. Globally consistent depth labeling of 4D light fields. In CVPR.Google ScholarGoogle Scholar
  47. Wanner, S., Fehr, J., and Jaehne, B. 2011. Generating EPI representations of 4D light fields with a single lens focused plenoptic camera. In IISVC. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antúnez, E. R., Barth, A., Adams, A., Horowitz, M., and Levoy, M. 2005. High performance imaging using large camera arrays. ACM Trans. Graph. 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wood, D. N., Azuma, D. I., Aldinger, K., Curless, B., Duchamp, T., Salesin, D. H., and Stuetzle, W. 2000. Surface light fields for 3D photography. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Yu, Y., Ferencz, A., and Malik, J. 2001. Extracting objects from range and radiance images. IEEE TVCG 7, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zhang, C., and Chen, T. 2004. A self-reconfigurable camera array. In EGSR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Zhu, Z., Xu, G., and Lin, X. 1999. Panoramic EPI generation and analysis of video from a moving platform with vibration. In CVPR.Google ScholarGoogle Scholar
  53. Ziegler, R., Bucheli, S., Ahrenberg, L., Magnor, M. A., and Gross, M. H. 2007. A bidirectional light field - hologram transform. Comput. Graph. Forum 26, 3.Google ScholarGoogle ScholarCross RefCross Ref
  54. Zitnick, C. L., and Kang, S. B. 2007. Stereo for image-based rendering using image over-segmentation. IJCV 75, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Zitnick, C. L., Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R. 2004. High-quality video view interpolation using a layered representation. ACM Trans. Graph. 23, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Scene reconstruction from high spatio-angular resolution light fields

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 4
          July 2013
          1215 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2461912
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2013
          Published in tog Volume 32, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader