skip to main content
research-article

Leveraging Human Mobility for Communication in Body Area Networks

Published:06 May 2014Publication History
Skip Abstract Section

Abstract

When a person is walking the RF signal strength of an on-body communication link may exhibit significant fluctuation with peak-to-peak amplitudes beyond 20 dB. Instantaneous signal strength may be noisy, but the smoothed signal typically exhibits a period that matches the person's stride period. We present an opportunistic packet scheduler that extracts a set of Received Signal Strength Indicator (RSSI) samples from application traffic and utilizes an accelerometer to monitor the person's gait cycle. Packets are scheduled based on previous RSSI peaks and the current offset within the gait cycle. We formulate the task of finding a nonoverlapping packet schedule among the different body area network (BAN) devices as a linear programming problem and present an efficient way of solving it with the simplex method. Our experimental evaluation shows that outdoors BAN links with PRR (ratio of correctly received to transmitted packets) values between 50% and 90% can typically be turned into reliable links with PRR values well above 90%. Indoors the improvements are smaller, but still significant at low transmission power. The main price is an increase in packet delivery latency. The energy consumed by the devices is marginal, but the coordinator spends more energy due to signal processing.

References

  1. Tobias Achterberg. 2009. SCIP: Solving constraint integer programs. Math. Prog. Comput. 1, 1, 1--41. http://mpc.zib.de/index.php/MPC/article/view/4.Google ScholarGoogle ScholarCross RefCross Ref
  2. Peter Barrie, Andreas Komninos, and Oleksii Mandrychenko. 2009. A pervasive gesture-driven augmented reality prototype using wireless sensor body area networks. In Proceedings of the 6th International Conference on Mobile Technology, Application and Systems (Mobility'09). ACM, New York, Article 61, 4 pages. DOI: http://dx.doi.org/10.1145/1710035.1710096 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Rainer Burkard, Mauro Dell'Amico, and Silvano Martello. 2009. Assignment Problems. SIAM, Philadelphia, PA. Google ScholarGoogle Scholar
  4. Jhih-Ciang Cai, Shih-Heng Cheng, and Ching-Yao Huang. 2009. MAC channel model for WBAN. Technical Report 15-09-0562-00-0006. IEEE P802.15.Google ScholarGoogle Scholar
  5. Simon L. Cotton and William G. Scanlon. 2011. Channel modeling of narrowband body-centric wireless communication systems. In Wireless Body Area Networks - Technology, Implementation, and Applications, Mehmet R. Yuce and Jamil Y. Khan (Eds.), Pan Stanford Publishing, Chapter 11.Google ScholarGoogle Scholar
  6. David Cypher, Nicolas Chevrollier, Nicolas Montavont, and Nada Golmie. 2006. Prevailing over wires in healthcare environments: Benefits and challenges. Commun. Maga. IEEE 44, 4, 56--63. DOI: http://dx.doi.org/10.1109/MCOM.2006.1632650 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. George B. Dantzig. 1998. Linear programming and extensions. In Landmarks in Physics and Mathematics. Princeton University Press. http://books.google.de/books?id=2j46uCX5ZAYC.Google ScholarGoogle Scholar
  8. Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris. 2003. A high-throughput path metric for multi-hop wireless routing. In Proceedings of the 9th Annual International Conference on Mobile Computing and Networking (MobiCom'03). ACM, New York, 134--146. DOI: http://dx.doi.org/10.1145/938985.939000 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Raffaele D'Errico and Laurent Ouvry. 2009. Time-variant BAN channel characterization. In Proceedings of the 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, 3000--3004. DOI: http://dx.doi.org/10.1109/PIMRC.2009.5449948Google ScholarGoogle ScholarCross RefCross Ref
  10. Ashay Dhamdhere, Vijay Sivaraman, Vidit Mathur, and Shuo Xiao. 2008. Algorithms for transmission power control in biomedical wireless sensor networks. In Proceedings of the IEEE Asia-Pacific Services Computing Conference. IEEE Computer Society, Los Alamitos, CA, 1114--1119. DOI: http://dx.doi.org/10.1109/APSCC.2008.121 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Stefan Drude. 2007. Requirements and application scenarios for body area networks. In Proceedings of the 16th Mobile and Wireless Communications Summit, 1--5. DOI: http://dx.doi.org/10.1109/ISTMWC.2007.4299336Google ScholarGoogle ScholarCross RefCross Ref
  12. Prabal Dutta, Stephen Dawson-Haggerty, Yin Chen, Chieh-Jan Liang, and Andreas Terzis. 2010. Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless. In Proceedings of the 8th International Conference on Embedded Networked Sensor Systems (SenSys'10), (Zurich, Switzerland). 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Thomas S. Ferguson. 1995. Linear Programming - A Concise Introduction. http://www.math.ucla.edu/∼tom/.Google ScholarGoogle Scholar
  14. A. Fort, C. Desset, P. Wambacq, and L.V. Biesen. 2007. Indoor body-area channel model for narrowband communications. IET, Microwaves, Antennas Propagation, 1, 6, 1197--1203. DOI: http://dx.doi.org/10.1049/iet-map:20060215Google ScholarGoogle Scholar
  15. Freescale Semiconductor. 2008. ±1.5g - 6g three axis low-g micromachined accelerometer. www.freescale.com/files/sensors/doc/data_sheet/MMA7260QT.pdf.Google ScholarGoogle Scholar
  16. Gregor Gaertner, Eamonn ONuallain, Andrew Butterly, Kulpreet Singh, and Vinny Cahill. 2004. 802.11 link quality and its prediction an experimental study. In Personal Wireless Communications, Lecture Notes in Computer Science, Ignas Niemegeers and Sonia Heemstra de Groot, Eds., vol. 3260. Springer, Berlin/Heidelberg, 609--611.Google ScholarGoogle Scholar
  17. M. Ghaddar, L. Talbi, and T. A. Denidni. 2004. Human body modelling for prediction of effect of people on indoor propagation channel. Electronics Letters 40, 25, 1592--1594.Google ScholarGoogle ScholarCross RefCross Ref
  18. Jean-Marie Gorce, Claire Goursaud, Guillaume Villemaud, Raffaele D'Errico, and Laurent Ouvry. 2009. Opportunistic relaying protocols for human monitoring in BAN. In Proceedings of PIMRC. IEEE, 732--736.Google ScholarGoogle ScholarCross RefCross Ref
  19. P. S. Hall, M. Ricci, and T. W. Hee. 2002a. Characterization of on-body communication channels. In Proceedings of the 3rd International Conference on Microwave and Millimeter Wave Technology (ICMMT'02). 770--772. DOI: http://dx.doi.org/10.1109/ICMMT.2002.1187814Google ScholarGoogle Scholar
  20. P. S. Hall, M. Ricci, and T. M. Hee. 2002b. Measurements of on-body propagation characteristics. In IEEE Antennas and Propagation Society International Symposium, vol. 2, 310--313. DOI: http://dx.doi.org/10.1109/APS.2002.1016087.Google ScholarGoogle Scholar
  21. Harvard Medical School. 2009. Harvard Health Letter: Counting Every Step You Take.Google ScholarGoogle Scholar
  22. Jan-Hinrich Hauer. 2009. TKN15.4: An IEEE 802.15.4 MAC implementation for TinyOS 2. TKN Technical Report Series TKN-08-003. Telecommunication Networks Group, Technical University Berlin. http://www.tkn.tu-berlin.de/fileadmin/fg112/Papers/TKN154.pdf.Google ScholarGoogle Scholar
  23. Jan-Hinrich Hauer, Roberta Daidone, Ricardo Severino, Jasper Büsch, Marco Tiloca, and Stefano Tennina. 2011. Poster Abstract: An open-source IEEE 802.15.4 MAC implementation for TinyOS 2.1. In Proceedings of the 8th European Conference on Wireless Sensor Networks (EWSN). Bonn, Germany.Google ScholarGoogle Scholar
  24. Jan-Hinrich Hauer, Vlado Handziski, and Adam Wolisz. 2009. Experimental study of the impact of WLAN interference on IEEE 802.15.4 Body Area Networks. In Proceedings of the 6th European Conference on Wireless Sensor Networks (EWSN). Cork, Ireland. DOI: http://dx.doi.org/10.1007/978-3-642-00224-3_2 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Reed W. Hoyt, Jaques Reifman, Trinka S. Coster, and Mark J. Buller. 2002. Combat medical informatics: present and future. In Proceedings of the AMIA Symposium 3, 335--339. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2244161/.Google ScholarGoogle Scholar
  26. IEEE. 2006. IEEE Standard for Information technology Telecommunications and information exchange between systems Local and metropolitan area networks- Specific requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs). IEEE Std 802.15.4-2006 (Revision of IEEE Std 802.15.4-2003) (2006), 1--305.Google ScholarGoogle Scholar
  27. IEEE. 2012. IEEE Standard for Local and metropolitan area networks - Part 15.6: Wireless Body Area Networks. IEEE Std 802.15.6-2012 (2012), 1--271. DOI: http://dx.doi.org/10.1109/IEEESTD.2012.6161600Google ScholarGoogle Scholar
  28. Sushant Jain, Rahul C. Shah, Waylon Brunette, Gaetano Borriello, and Sumit Roy. 2006. Exploiting mobility for energy efficient data collection in wireless sensor networks. Mob. Netw. Appl. 11 (2006), 327--339. Issue 3. DOI: http://dx.doi.org/10.1007/s11036-006-5186-9 Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ali Kara and Henry L. Bertoni. 2001. Blockage/shadowing and polarization measurements at 2.45 GHz for interference evaluation between Bluetooth and IEEE 802.11 WLAN. IEEE Antennas and Propagation Society International Symposium, 3, 376--379.Google ScholarGoogle Scholar
  30. Ramtin Kazemi, Rein Vesilo, Eryk Dutkiewicz, and Ren Liu. 2011. Dynamic power control in Wireless Body Area Networks using reinforcement learning with approximation. In Proceedings of the IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). 2203--2208. DOI: http://dx.doi.org/10.1109/PIMRC.2011.6139908Google ScholarGoogle ScholarCross RefCross Ref
  31. Eamonn J. Keogh and Michael J. Pazzani. 2000. Scaling up dynamic time warping for datamining applications. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'00). ACM, New York, 285--289. DOI: http://dx.doi.org/10.1145/347090.347153 Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Benoît Latré, Bart Braem, Ingrid Moerman, Chris Blondia, and Piet Demeester. 2010. A survey on wireless body area networks. Wirel. Netw. (2010), 1--18. http://dx.doi.org/10.1007/s11276-010-0252-4 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Philip Levis, David Gay, Vlado Handziski, Jan-Hinrich Hauer, Ben Greenstein, Martin Turon, Jonathan Hui, Kevin Klues, Cory Sharp, Robert Szewczyk, Joe Polastre, Philip Buonadonna, Lama Nachman, Gilman Tolle, David Culler, and Adam Wolisz. 2005. T2: A Second Generation OS For Embedded Sensor Networks. Technical Report TKN-05-007. TKN Group, Technische Universitát Berlin.Google ScholarGoogle Scholar
  34. Chieh-Jan Liang, Bodhi Priyantha, Jie Liu, and Terzis Andreas. 2010. Surviving Wi-Fi interference in low power ZigBee networks. In Proceedings of the 8th International Conference on Embedded Networked Sensor Systems (SenSys'10) (Zurich, Switzerland), 309--322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ratko Magjarevic. 2007. Home care technologies for ambient assisted living. In Proceedings of the 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing, Ratko Magjarevic, Tomaz Jarm, Peter Kramar, and Anze Zupanic (Eds.) Springer, Berlin, Heidelberg, 397--400.Google ScholarGoogle ScholarCross RefCross Ref
  36. Ritesh Maheshwari, Shweta Jain, and Samir R. Das. 2008. A measurement study of interference modeling and scheduling in low-power wireless networks. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (SenSys'08). ACM, New York, 141--154. DOI: http://dx.doi.org/10.1145/1460412.1460427 Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Michael Marschollek, Mehmet Goevercin, Klaus-Hendrik Wolf, Bianying Song, Matthias Gietzelt, Reinhold Haux, and Elisabeth Steinhagen-Thiessen. 2008. A performance comparison of accelerometry-based step detection algorithms on a large, non-laboratory sample of healthy and mobility-impaired persons. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS'08). 1319--1322. DOI: http://dx.doi.org/10.1109/IEMBS.2008.4649407Google ScholarGoogle ScholarCross RefCross Ref
  38. Emiliano Miluzzo, Xiao Zheng, Kristóf Fodor, and Andrew T. Campbell. 2008. Radio characterization of 802.15.4 and its impact on the design of mobile sensor networks. In Proceedings of the 5th European Conference on Wireless Sensor Networks (EWSN'08). Springer-Verlag, Berlin, Heidelberg, 171--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Dino Miniutti, Leif Hanlen, Andrew Zhang, David Smith, Daniel Lewis, David Rodda, and Ben Gilbert. 2008. Narrowband channel characterization for body area networks. Technical Report 15-08-0033-02-0006-draft-of-channel-model-for-body-area-network. IEEE P802.15.Google ScholarGoogle Scholar
  40. B. Moulton, L. Hanlen, June Chen, G. Croucher, L. Mahendran, and A. Varis. 2010. Body-area-network transmission power control using variable adaptive feedback periodicity. In Proceedings of the 2010 Australian Communications Theory Workshop (AusCTW). 139--144. DOI: http://dx.doi.org/10.1109/AUSCTW.2010.5426767Google ScholarGoogle ScholarCross RefCross Ref
  41. Sirajum Munir, Shan Lin, Enamul Hoque, S. M. Shahriar Nirjon, John A. Stankovic, and Kamin Whitehouse. 2010. Addressing burstiness for reliable communication and latency bound generation in wireless sensor networks. In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN'10). ACM, New York, 303--314. DOI: http://dx.doi.org/10.1145/1791212.1791248 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. George L. Nemhauser and Laurence A. Wolsey. 1988. Integer and Combinatorial Optimization. Wiley-Interscience, New Yark. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. S. Obayashi and J. Zander. 1998. A body-shadowing model for indoor radio communication environments. IEEE Trans. Anten. Propag. 46, 6, 920--927.Google ScholarGoogle ScholarCross RefCross Ref
  44. OECD. 2006. Organisation for Economic Co-operation and Development: Projecting OECD health and long-term care expenditures: What are the main drivers? Economics Department Working Paper 477. (2006).Google ScholarGoogle Scholar
  45. K. Shashi Prabh and Jan-Hinrich Hauer. 2011. Opportunistic packet scheduling in body area networks. In Proceedings of the 8th European Conference on Wireless Sensor Networks (EWSN). Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. K. Shashi Prabh, Fernando Royo, Stefano Tennina, and Teresa Olivares. 2012. BANMAC: an opportunistic MAC protocol for reliable communications in body area networks. In Proceedings of the Distributed Computing in Sensor Systems and Workshops. 166--175. DOI: http://dx.doi.org/10.1109/DCOSS.2012.37 Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. L. Roelens, S. Van den Bulcke, W. Joseph, G. Vermeeren, and L. Martens. 2006. Path loss model for wireless narrowband communication above flat phantom. Electron. Lett. 42, 1, 10--11. DOI: http://dx.doi.org/10.1049/el:20063062Google ScholarGoogle ScholarCross RefCross Ref
  48. M. Ross, H. Shaffer, A. Cohen, R. Freudberg, and H. Manley. 1974. Average magnitude difference function pitch extractor. IEEE Trans. Acoust. Speech Sig. Process. 353--362.Google ScholarGoogle ScholarCross RefCross Ref
  49. Aaron Schulman, Vishnu Navda, Ramachandran Ramjee, Neil Spring, Pralhad Deshpande, Calvin Grunewald, Kamal Jain, and Venkata N. Padmanabhan. 2010. Bartendr: A practical approach to energy-aware cellular data scheduling. In Proceedings of the 16th Annual International Conference on Mobile Computing and Networking (MobiCom'10). ACM, New York, 85--96. DOI: http://dx.doi.org/10.1145/1859995.1860006 Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Sentilla Corporation. 2004. Tmote Sky Datasheet.Google ScholarGoogle Scholar
  51. Shimmer Research. 2010. Shimmer2 Capabilities Overview. http://www.shimmer-research.com/wp-content/uploads/2010/08/Shimmer-2R-Capabilities-Overview.pdf. (2010).Google ScholarGoogle Scholar
  52. D. B. Smith, L. W. Hanlen, and D. Miniutti. 2012. Transmit power control for wireless body area networks using novel channel prediction. In Proceedings of the Wireless Communications and Networking Conference (WCNC), 684--688. DOI: http://dx.doi.org/10.1109/WCNC.2012.6214456Google ScholarGoogle Scholar
  53. Kannan Srinivasan, Maria A. Kazandjieva, Saatvik Agarwal, and Philip Levis. 2008. The β-factor: measuring wireless link burstiness. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (SenSys'08). ACM, New York, 29--42. DOI: http://dx.doi.org/10.1145/1460412.1460416 Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Kannan Srinivasan and Philip Levis. 2006. RSSI is under appreciated. In Proceedings of the 3rd Workshop on Embedded Networked Sensors (EmNets06).Google ScholarGoogle Scholar
  55. Texas Instruments. 2002. CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver. http://www.ti.com/lit/gpn/cc2420.Google ScholarGoogle Scholar
  56. C. Tudor-Locke, Y Hatano, RP Pangrazi, and M. Kang. 2008. Revisiting “How many steps are enough?”. Med Sci Sports Exerc.Google ScholarGoogle Scholar
  57. United Nations. 2011. World Population Prospects: The 2010 Revision, Highlights and Advance Tables. Department of Economic and Social Affairs, Population Division, Working Paper No. ESA/P/WP.220.Google ScholarGoogle Scholar
  58. U.S. Health Administration. 2004. U.S. Health Resources and Services Administrations: What is Behind HRSA's Projected Supply, Demand, and Shortage of Registered Nurses? http://bhpr.hrsa.gov/healthworkforce/reports/behindrnprojections/index.htm.Google ScholarGoogle Scholar
  59. K. Wac, R. Bults, B. van Beijnum, I. Widya, V. Jones, D. Konstantas, M. Vollenbroek-Hutten, and H. Hermens. 2009. Mobile patient monitoring: The MobiHealth system. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'09). 1238--1241. DOI: http://dx.doi.org/10.1109/IEMBS.2009.5333477Google ScholarGoogle Scholar
  60. J. Wilson, V. Bhargava, A. Redfern, and P. Wright. 2007. A wireless sensor network and incident command interface for urban firefighting. In Proceedings of the 4th Annual International Conference on Mobile and Ubiquitous Systems: Networking Services (MobiQuitous'07). 1--7. DOI: http://dx.doi.org/10.1109/MOBIQ.2007.4450980 Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Shuo Xiao, Vijay Sivaraman, and Alison Burdett. 2008. Adapting radio transmit power in wireless body area sensor networks. In Proceedings of the ICST 3rd International Conference on Body area networks (BodyNets'08). ICST, Brussels, Belgium, Article 14, 8 pages. http://portal.acm.org/citation.cfm?id=1460257.1460276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Guang-Zhong Yang (Ed.). 2006. Body Sensor Networks. Springer Verlag.Google ScholarGoogle Scholar
  63. K. Yazdandoost and K. Sayrafian-Pour. 2010. IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) - Channel Model for Body Area Network (BAN). https://mentor.ieee.org/802.15/dcn/08/15-08-0780-12-0006-tg6-channel-model.pdf.Google ScholarGoogle Scholar
  64. Hong Ying, C. Silex, A. Schnitzer, S. Leonhardt, and M. Schiek. 2007. Automatic step detection in the accelerometer signal. In Proceedings of the 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN'07), R. Magjarevic, J. H. Nagel, Steffen Leonhardt, Thomas Falck, and Petri Máhónen (Eds.), vol. 13, Springer, Berlin, Heidelberg, 80--85.Google ScholarGoogle Scholar

Index Terms

  1. Leveraging Human Mobility for Communication in Body Area Networks

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Sensor Networks
          ACM Transactions on Sensor Networks  Volume 10, Issue 3
          April 2014
          509 pages
          ISSN:1550-4859
          EISSN:1550-4867
          DOI:10.1145/2619982
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 May 2014
          • Accepted: 1 May 2013
          • Revised: 1 March 2013
          • Received: 1 September 2012
          Published in tosn Volume 10, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader