skip to main content
10.1145/2988450.2988456acmotherconferencesArticle/Chapter ViewAbstractPublication PagesdlrsConference Proceedingsconference-collections
research-article

Hybrid Recommender System based on Autoencoders

Authors Info & Claims
Published:15 September 2016Publication History

ABSTRACT

A standard model for Recommender Systems is the Matrix Completion setting: given partially known matrix of ratings given by users (rows) to items (columns), infer the unknown ratings. In the last decades, few attempts where done to handle that objective with Neural Networks, but recently an architecture based on Autoencoders proved to be a promising approach. In current paper, we enhanced that architecture (i) by using a loss function adapted to input data with missing values, and (ii) by incorporating side information. The experiments demonstrate that while side information only slightly improve the test error averaged on all users/items, it has more impact on cold users/items.

References

  1. R. P. Adams and G. E. D. I. Murray. Incorporating side information in probabilistic matrix factorization with gaussian processes. In Proc. of UAI'10, 2010.Google ScholarGoogle Scholar
  2. C. M. Bishop. Neural networks for pattern recognition. Oxford univ. press, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. Chen, D. Li, Y. Zhao, Q. Lv, and L. Shang. Wemarec: Accurate and scalable recommendation through weighted and ensemble matrix approximation. In Proc. of the Int. ACM SIGIR Conf. on Res. and Dev. in Information Retrieval, pages 303--312, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. T. Chen, W. Zhang, Q. Lu, K. Chen, Z. Zheng, and Y. Yong. Svdfeature: a toolkit for feature-based collaborative filtering. JMLR, 13(1):3619--3622, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. G. Dziugaite and D. Roy. Neural network matrix factorization. arXiv preprint arXiv:1511.06443, 2015.Google ScholarGoogle Scholar
  6. X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proc. of AISTATS'10, pages 249--256, 2010.Google ScholarGoogle Scholar
  7. X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Proc. of AISTATS'11, pages 315--323, 2011.Google ScholarGoogle Scholar
  8. C. Gomez-Uribe and N. Hunt. The netflix recommender system: Algorithms, business value, and innovation. ACM Trans. Manage. Inf. Syst., 6(4):13:1--13:19, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Y.-D. Kim and S. Choi. Scalable variational bayesian matrix factorization with side information. In Proc. of AISTATS'14, Reykjavik, Iceland, 2014.Google ScholarGoogle Scholar
  10. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30--37, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. A. Kramer. Nonlinear principal component analysis using autoassociative neural networks. AIChE journal, 37(2):233--243, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  12. R. Kumar, B. K. Verma, and S. S. Rastogi. Social popularity based svd++ recommender system. International Journal of Computer Applications, 87(14), 2014.Google ScholarGoogle ScholarCross RefCross Ref
  13. Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436--444, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  14. Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In Neural networks: Tricks of the trade, pages 9--48. Springer, 1998. Google ScholarGoogle Scholar
  15. H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse coding algorithms. In Advances in neural information processing systems, pages 801--808, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Lee, S. Kim, G. Lebanon, and Y. Singerm. Local low-rank matrix approximation. In Proc. of ICML'13, pages 82--90, 2013.Google ScholarGoogle Scholar
  17. J. Lee, M. Sun, and G. Lebanon. A comparative study of collaborative filtering algorithms. arXiv preprint arXiv:1205.3193, 2012.Google ScholarGoogle Scholar
  18. D. Li, C. Chen, Q. Lv, J. Yan, L. Shang, and S. Chu. Low-rank matrix approximation with stability. In Proc. of ICML'16, 2016.Google ScholarGoogle Scholar
  19. S. Li, J. Kawale, and Y. Fu. Deep collaborative filtering via marginalized denoising auto-encoder. In Proc. of CIKM'15, pages 811--820. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Lops, M. D. Gemmis, and G. Semeraro. Content-based recommender systems: State of the art and trends. In Recommender systems handbook, pages 73--105. Springer, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  21. H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In Proc. of the int. conf. on Web search and data mining (WSDM '11), pages 287--296, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. V. Miranda, J. Krstulovic, H. Keko, C. Moreira, and J. Pereira. Reconstructing Missing Data in State Estimation With Autoencoders. IEEE Transactions on Power Systems, 27(2):604--611, 2012.Google ScholarGoogle Scholar
  23. A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In NIPS'07, pages 1257--1264, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. I. Porteous and M. W. A. U. Asuncion. Bayesian matrix factorization with side information and dirichlet process mixtures. In Proc. of AAAI'10, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Rendle. Factorization machines. In Proc. of ICDM'10, pages 995--1000, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In Proc. of ICML'08, pages 880--887. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering. In Proc. of ICML'07, pages 791--798. ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. Autorec: Autoencoders meet collaborative filtering. In Proc. of Int. Conf. on World Wide Web Companion, pages 111--112, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. N. Srivastava, G. Hinton, A. Krizhevsk, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929--1958, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. F. Strub and J. Mary. Collaborative Filtering with Stacked Denoising AutoEncoders and Sparse Inputs. In NIPS Workshop on Machine Learning for eCommerce, Montreal, Canada, 2015.Google ScholarGoogle Scholar
  31. O. Teytaud, S. Gelly, and J. Mary. Active learning in regression, with application to stochastic dynamic programming. In A. International Conference On Informatics in Control and Robotics, editors, ICINCO and CAP, pages 373--386, 2007.Google ScholarGoogle Scholar
  32. V. Tresp, S. Ahmad, and R. Neuneier. Training Neural Networks with Deficient Data. Advances in Neural Information Processing Systems 6, pages 128--135, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. T. T. Truyen, D. Phung, and S. Venkatesh. Ordinal boltzmann machines for collaborative filtering. In Proc. of UAI'09, pages 548--556. AUAI Press, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Van den Oord, S. Dieleman, and B. Schrauwen. Deep content-based music recommendation. In Proc. of NIPS'13, pages 2643--2651, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Jour. of Mach. Learn. Res., 11(3):3371--3408, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. H. Wang, N. Wang, and D.-Y. Yeung. Collaborative deep learning for recommender systems. Proc. of Int. Conf. on Knowledge Discovery and Data Mining (KDD'14), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. X. Wang and Y. Wang. Improving content-based and hybrid music recommendation using deep learning. In Proc. of the ACM Int. Conf. on Multimedia, pages 627--636. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Y. Wu, C. DuBois, A. Zheng, and M. Ester. Collaborative denoising auto-encoders for top-n recommender systems. In Proc. of WSDM'16, pages 153--162. ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering for the netflix prize. In Algorithmic Aspects in Information and Management, pages 337--348. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. F. Zhuang, D. Luo, X. Jin, H. Xiong, P. Luo, and Q. He. Representation learning via semi-supervised autoencoder for multi-task learning. In Proc. of ICDM'15, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  1. Hybrid Recommender System based on Autoencoders

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      DLRS 2016: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems
      September 2016
      47 pages
      ISBN:9781450347952
      DOI:10.1145/2988450

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 15 September 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate11of27submissions,41%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader