skip to main content
10.1145/3011141.3011185acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiiwasConference Proceedingsconference-collections
short-paper

Hybrid large-scale ontology matching strategy on big data environment

Published:28 November 2016Publication History

ABSTRACT

Ontology matching is one of the essential methodologies to overcome heterogeneity issues. Multiple knowledge-based and information systems perform ontology matching strategies to find correspondences between several ontologies for the purpose of discovering valuable information across various domains. The design and implementation of matching systems raises several challenges, especially, the matching accuracy and the performance issues. Accordingly, adapting the system to the requirements of Big Data era brings additional perspectives and challenges. Furthermore, to provide on-the-fly matching and in-time processing, the system must handle matching accuracy, runtime complexity and performance issues as an entire matching strategy. To this end, this paper presents a new hybrid ontology matching approach that benefit on one hand from the opportunities offered by parallel platforms, and on the other hand from ontology matching techniques, while applying a resource-based decomposition to improve the performance of the system.

References

  1. Algergawy, A., Babalou, S., Kargar, M. J., & Davarpanah, S. H. (2015, September). SeeCOnt: A New Seeding-Based Clustering Approach for Ontology Matching. In East European Conference on Advances in Databases and Information Systems (pp. 245--258). Springer International Publishing.Google ScholarGoogle Scholar
  2. Algergawy, A., Massmann, S., & Rahm, E. (2011, September). A clustering-based approach for large-scale ontology matching. In East European Conference on Advances in Databases and Information Systems (pp. 415--428). Springer Berlin Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amin, M. B., Khan, W. A., Lee, S., & Kang, B. H. (2015). Performance-based ontology matching. Applied Intelligence, 43(2), 356--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ba, M., & Diallo, G. (2013). Large-scale biomedical ontology matching with ServOMap. IRBM, 34(1), 56--59.Google ScholarGoogle ScholarCross RefCross Ref
  5. Brandes, U., Borgatti, S. P., & Freeman, L. C. (2016). Maintaining the duality of closeness and betweenness centrality. Social Networks, 44, 153--159.Google ScholarGoogle ScholarCross RefCross Ref
  6. Csató, L. (2015). Measuring centrality by a generalization of degree. Central European Journal of Operations Research, 1--20.Google ScholarGoogle Scholar
  7. David, J., Guillet, F., & Briand, H. (2006, November). Matching directories and OWL ontologies with AROMA. In Proceedings of the 15th ACM international conference on Information and knowledge management (pp. 830--831). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Djeddi, W. E., & Khadir, M. T. (2014, September). A novel approach using context-based measure for matching large scale ontologies. In International Conference on Data Warehousing and Knowledge Discovery (pp. 320--331). Springer International Publishing.Google ScholarGoogle ScholarCross RefCross Ref
  9. Do, H. H., & Rahm, E. (2007). Matching large schemas: Approaches and evaluation. Information Systems, 32(6), 857--885. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ehrig, M., & Staab, S. (2004, November). QOM-quick ontology mapping. In International Semantic Web Conference (pp. 683--697). Springer Berlin Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Essayeh, A., & Abed, M. (2015). Towards Ontology Matching Based System Through Terminological, Structural and Semantic Level. Procedia Computer Science, 60, 403--412.Google ScholarGoogle ScholarCross RefCross Ref
  12. Euzenat, J. and Shvaiko, P., 2007. Ontology matching (Vol. 333). Heidelberg: Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Friedl, D. M. B., & Heidemann, J. (2010). A critical review of centrality measures in social networks. Business & Information Systems Engineering, 2(6), 371--385.Google ScholarGoogle ScholarCross RefCross Ref
  14. Gross, A., Hartung, M., Kirsten, T., & Rahm, E. (2010, August). On matching large life science ontologies in parallel. In International Conference on Data Integration in the Life Sciences (pp. 35--49). Springer Berlin Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hu, W., Qu, Y., & Cheng, G. (2008). Matching large ontologies: A divide-and-conquer approach. Data & Knowledge Engineering, 67(1), 140--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jiménez-Ruiz, E., & Grau, B. C. (2011, October). Logmap: Logic-based and scalable ontology matching. In International Semantic Web Conference (pp. 273--288). Springer Berlin Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kirsten, T., Kolb, L., Hartung, M., Groß, A., Köpcke, H., & Rahm, E. (2010). Data partitioning for parallel entity matching. arXiv preprint arXiv:1006.5309.Google ScholarGoogle Scholar
  18. Klein, D. J. (2010). Centrality measure in graphs. Journal of mathematical chemistry, 47(4), 1209--1223.Google ScholarGoogle ScholarCross RefCross Ref
  19. Miller, G. A. (1995). WordNet: a lexical database for English. Communications of the ACM, 38(11), 39--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Moawed, S., Algergawy, A., Sarhan, A., Eldosouky, A., & Saake, G. (2014). A latent semantic indexing-based approach to determine similar clusters in large-scale schema matching. In New Trends in Databases and Information Systems (pp. 267--276). Springer International Publishing.Google ScholarGoogle Scholar
  21. Mountasser, I., Ouhbi, B., & Frikh, B. (2015, December). From data to wisdom: A new multi-layer prototype for Big Data management process. In 2015 15th International Conference on Intelligent Systems Design and Applications (ISDA) (pp. 104--109). IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  22. Otero-Cerdeira, L., Rodríguez-Martínez, F. J., & Gómez-Rodríguez, A. (2015). Ontology matching: A literature review. Expert Systems with Applications, 42(2), 949--971. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Peukert, E., Berthold, H., & Rahm, E. (2010, March). Rewrite techniques for performance optimization of schema matching processes. In Proceedings of the 13th International Conference on Extending Database Technology (pp. 453--464). ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rahm, E. (2011). Towards large-scale schema and ontology matching. In Schema matching and mapping (pp. 3--27). Springer Berlin Heidelberg.Google ScholarGoogle Scholar
  25. Santodomingo, R., Rohjans, S., Uslar, M., Rodríguez-Mondéjar, J. A., & Sanz-Bobi, M. A. (2014). Ontology matching system for future energy smart grids. Engineering Applications of Artificial Intelligence, 32, 242--257.Google ScholarGoogle ScholarCross RefCross Ref
  26. Schuhmacher, M., & Ponzetto, S. P. (2014, May). Ranking Entities in a Large Semantic Network. In European Semantic Web Conference (pp. 254--258). Springer International Publishing.Google ScholarGoogle Scholar
  27. Seddiqui, M. H., & Aono, M. (2009). An efficient and scalable algorithm for segmented alignment of ontologies of arbitrary size. Web Semantics: Science, Services and Agents on the World Wide Web, 7(4), 344--356. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Shvaiko, P., & Euzenat, J. (2013). Ontology matching: state of the art and future challenges. IEEE Transactions on knowledge and data engineering, 25(1), 158--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Song, F., Zacharewicz, G., & Chen, D. (2013). An Analytic Aggregation-Based Ontology Alignment Approach with Multiple Matchers. In Advanced Techniques for Knowledge Engineering and Innovative Applications (pp. 143--159). Springer Berlin Heidelberg.Google ScholarGoogle Scholar
  30. Steyskal, S., & Polleres, A. (2013, September). Mix'n'match: An alternative approach for combining ontology matchers. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 555--563). Springer Berlin Heidelberg.Google ScholarGoogle Scholar
  31. Wang, P., Zhou, Y., & Xu, B. (2011, July). Matching large ontologies based on reduction anchors. In IJCAI (pp. 2343--2348). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Hybrid large-scale ontology matching strategy on big data environment

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        iiWAS '16: Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services
        November 2016
        528 pages
        ISBN:9781450348072
        DOI:10.1145/3011141

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 28 November 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • short-paper

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader