skip to main content
column

Guest Column: A Survey of Quantum Learning Theory

Published:12 June 2017Publication History
Skip Abstract Section

Abstract

This paper surveys quantum learning theory: the theoretical aspects of machine learning using quantum computers. We describe the main results known for three models of learning: exact learning from membership queries, and Probably Approximately Correct (PAC) and agnostic learning from classical or quantum examples.

References

  1. J. Adcock, E. Allen, M. Day, S. Frick, J. Hinchliff, M. Johnson, S. Morley-Short, S. Pallister, A. Price, and S. Stanisic. Advances in quantum machine learning, 9 Dec 2015. arXiv:1512.02900.Google ScholarGoogle Scholar
  2. S. Aaronson. Ten semi-grand challenges for quantum computing theory. http://www.scottaaronson.com/writings/qchallenge.html, 2005.Google ScholarGoogle Scholar
  3. S. Aaronson. The learnability of quantum states. Proceedings of the Royal Society of London, 463(2088), 2007. quant-ph/0608142.Google ScholarGoogle Scholar
  4. S. Aaronson. Quantum machine learning algorithms: Read the fine print. Nature Physics, 11(4):291--293, April 2015.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Anthony and P. Bartlett. Function learning from interpolation. Combinatorics, Probability, and Computing, 9(3):213--225, 2000. Earlier version in EuroCOLT'95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Anthony and P. L. Bartlett. Neural network learning: Theoretical foundations. Cambridge University Press, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. E. Aïmeur, G. Brassard, and S. Gambs. Machine learning in a quantum world. In Proceedings of Advances in Artificial Intelligence, 19th Conference of the Canadian Society for Computational Studies of Intelligence, volume 4013 of Lecture Notes in Artificial Intelligence, pages 431--442, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. E. Aïmeur, G. Brassard, and S. Gambs. Quantum speed-up for unsupervised learning. Machine Learning, 90(2):261--287, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Aaronson and L. Chen. Complexity-theoretic foundations of quantum supremacy experiments. arXiv:1612.05903, 2016.Google ScholarGoogle Scholar
  10. A. Ambainis, K. Iwama, A. Kawachi, H. Masuda, R. H. Putra, and S. Yamashita. Quantum identification of Boolean oracles. In Proceedings of 30th Annual Symposium on Theoretical Aspects of Computer Science (STACS'04), pages 105--116, 2004. arXiv:quant-ph/0403056.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Ambainis, K. Iwama, A. Kawachi, R. Raymond, and S. Yamashita. Improved algorithms for quantum identification of Boolean oracles. Theoretical Computer Science, 378(1):41--53, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Ambainis, K. Iwama, M. Nakanishi, H. Nishimura, R. Raymond, S. Tani, and S. Yamashita. Average/worst-case gap of quantum query complexities by on-set size. 2009. arXiv:0908.2468v1.Google ScholarGoogle Scholar
  13. D. Angluin and M. Kharitonov. When won't membership queries help? Journal of Computer and System Sciences, 50(2):336--355, 1995. Earlier version in STOC'91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and System Sciences, 64(4):750--767, 2002. Earlier version in STOC'00. quant-ph/0002066. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Angluin. Queries and concept learning. Machine Learning, 2(4):319--342, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Ambainis, A. Nayak, A. Ta-Shma, and U. V. Vazirani. Dense quantum coding and quantum nite automata. Journal of the ACM, 49(4):496--511, 2002. Earlier version in STOC'99. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Atıcı and R. Servedio. Improved bounds on quantum learning algorithms. Quantum Information Processing, 4(5):355--386, 2005. quant-ph/0411140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Atıcı and R. Servedio. Quantum algorithms for learning and testing juntas. Quantum Information Processing, 6(5):323--348, 2009. arXiv:0707.3479. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Arunachalam and R. de Wolf. Optimal quantum sample complexity of learning algorithms, 4 Jul 2016. arXiv:1607.00932. To appear in Proceedings of CCC'17.Google ScholarGoogle Scholar
  20. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510--1523, 1997. quantph/9701001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries that are sufficient for exact learning. Journal of Computer and System Sciences, 52(3):421--433, 1996. Earlier version in COLT'94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929--965, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Belovs. Quantum algorithms for learning symmetric juntas via the adversary bound. Computational Complexity, 24(2):255--293, 2015. Earlier version in Complexity'14. arXiv:1311.6777. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. P. A. Benioff. Quantum mechanical Hamiltonian models of Turing machines. Journal of Statistical Physics, 29(3):515--546, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  25. G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplication and estimation. In Quantum Computation and Quantum Information: A Millennium Volume, volume 305 of AMS Contemporary Mathematics Series, pages 53--74. 2002. quant-ph/0005055.Google ScholarGoogle Scholar
  26. N. H. Bshouty and J. C. Jackson. Learning DNF over the uniform distribution using a quantum example oracle. SIAM Journal on Computing, 28(3):1136--1153, 1999. Earlier version in COLT'95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. H. Barnum and E. Knill. Reversing quantum dynamics with near-optimal quantum and classical fidelity. Journal of Mathematical Physics, 43:2097--2106, 2002. quantph/0004088.Google ScholarGoogle ScholarCross RefCross Ref
  28. P. Bartlett and P. M. Long. Prediction, learning, uniform convergence, and scalesensitive dimensions. Journal of Computer and System Sciences, 56(2):174--190, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Computing, 26(5):1411--1473, 1997. Earlier version in STOC'93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum machine learning, 28 Nov 2016. arXiv:1611.09347.Google ScholarGoogle Scholar
  31. H. C. Cheng, M. H. Hsieh, and P. C. Yeh. The learnability of unknown quantum measurements. Quantum Information and Computation, 16(7&8):615--656, 2016. arXiv:1501.00559.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. Deutsch. Quantum theory, the Church-Turing principle, and the universal quantum Turing machine. In Proceedings of the Royal Society of London, volume A400, pages 97--117, 1985.Google ScholarGoogle Scholar
  33. A. Daniely and S. Shalev-Shwartz. Complexity theoretic limitations on learning DNF's. In Proceedings of the 29th Conference on Learning Theory (COLT'16), 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6/7):467--488, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  35. R. Feynman. Quantum mechanical computers. Optics News, 11:11--20, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  36. Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256--285, 1995. Earlier version in COLT'90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. D. Gavinsky. Quantum predictive learning and communication complexity with single input. Quantum Information and Computation, 12(7-8):575--588, 2012. Earlier version in COLT'10. arXiv:0812.3429. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In Proceedings of 21st ACM STOC, pages 25--32, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of 28th ACM STOC, pages 212--219, 1996. quant-ph/9605043. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. Hanneke. The optimal sample complexity of PAC learning. Journal of Machine Learning Research, 17(38):1--15, 2016. arXiv:1507.00473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100(1):78--150, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. T. Hegedüs. Generalized teaching dimensions and the query complexity of learning. In Proceedings of the 8th Conference on Learning Theory (COLT'95), pages 108--117, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. J. Haah, A. W. Harrow, Z. Ji, X. Wu, and N. Yi. Sample-optimal tomography of quantum states. In Proceedings of 48th ACM STOC, pages 913--925, 2016. arXiv:1508.01797. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. A. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for solving linear systems of equations. Physical Review Letters, 103(15):150502, 2009. arXiv:0811.3171.Google ScholarGoogle ScholarCross RefCross Ref
  45. M. Hunziker, D. A. Meyer, J. Park, J. Pommersheim, and M. Rothstein. The geometry of quantum learning. Quantum Information Processing, 9(3):321--341, 2010. quantph/0309059. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. S. Holevo. Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii, 9(3):3--11, 1973. English translation in Problems of Information Transmission, 9:177--183, 1973.Google ScholarGoogle Scholar
  47. J. C. Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. Journal of Computer and System Sciences, 55(3):414--440, 1997. Earlier version in FOCS'94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. R. Kothari. Quantum computing and learning theory. Unpublished manuscript, 2012.Google ScholarGoogle Scholar
  49. R. Kothari. An optimal quantum algorithm for the oracle identification problem. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014), pages 482--493, 2014. arXiv:1311.7685.Google ScholarGoogle Scholar
  50. I. Kerenidis and A. Prakash. Quantum recommendation systems. In Innovations in Theoretical Computer Science (ITCS'17), 2017. arXiv:1603.08675.Google ScholarGoogle Scholar
  51. A. Klivans and R. Servedio. Learning DNF in time 2~O (n1=3). Journal of Computer and System Sciences, 68(2):303--318, 2004. Earlier version in STOC'01. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. M. J. Kearns, R. E. Schapire, and L. Sellie. Toward efficient agnostic learning. Machine Learning, 17(2-3):115--141, 1994. Earlier version in COLT'92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. M. J. Kearns and L. G. Valiant. Cryptographic limitations on learning Boolean formulae and nite automata. Journal of the ACM, 41(1):67--95, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. M. J. Kearns and U. V. Vazirani. An introduction to computational learning theory. MIT Press, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. C. Y.-Y. Lin and H. Lin. Upper bounds on quantum query complexity inspired by the Elitzur-Vaidman bomb tester. Theory of Computing, 12:1--35, 2016. Earlier version in CCC'15. arXiv:1410.0932.Google ScholarGoogle ScholarCross RefCross Ref
  56. N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and learnability. Journal of the ACM, 40(3):607--620, 1993. Earlier version in FOCS'89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. S. Lloyd, M. Mohseni, and P. Rebentrost. Quantum algorithms for supervised and unsupervised machine learning, 1 Jul 2013. arXiv:1307.0411.Google ScholarGoogle Scholar
  58. S. Lloyd, M. Mohseni, and P. Rebentrost. Quantum principal component analysis. Nature Physics, 10(631--633), 2013. arXiv:1307.0401.Google ScholarGoogle Scholar
  59. Y. Manin. Vychislimoe i nevychislimoe (computable and noncomputable). Soviet Radio, pages 13--15, 1980. In Russian.Google ScholarGoogle Scholar
  60. Y. Manin. Classical computing, quantum computing, and Shor's factoring algorithm. quant-ph/9903008, 2 Mar 1999.Google ScholarGoogle Scholar
  61. A. Montanaro. On the distinguishability of random quantum states. Communications in Mathematical Physics, 273(3):619--636, 2007. quant-ph/0607011.Google ScholarGoogle ScholarCross RefCross Ref
  62. M. Yu. Moshkov. Conditional tests. Problemy Kibernetzkt, 40:131--170, 1983. In Russian.Google ScholarGoogle Scholar
  63. E. Mossel, R. O'Donnell, and R. Servedio. Learning functions of k relevant variables. Journal of Computer and System Sciences, 69(3):421--434, 2004. Earlier version in STOC'03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. R. O'Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. R. O'Donnell and J. Wright. Efficient quantum tomography. In Proceedings of 48th ACM STOC, pages 899--912, 2016. arXiv:1508.01907. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. P. Rebentrost, M. Mohseni, and S. Lloyd. Quantum support vector machine for big data classi cation. Physical Review Letters, 113(13), 2013. arXiv:1307.0471.Google ScholarGoogle Scholar
  68. S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algorithms. Cambridge University Press, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. R. Servedio and S. Gortler. Equivalences and separations between quantum and classical learnability. SIAM Journal on Computing, 33(5):1067--1092, 2004. Combines earlier papers from ICALP'01 and CCC'01. quant-ph/0007036. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484--1509, 1997. Earlier version in FOCS'94. quant-ph/9508027. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. H. U. Simon. General bounds on the number of examples needed for learning probabilistic concepts. Journal of Computer and System Sciences, 52(2):239--254, 1996. Earlier version in COLT'93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. D. Simon. On the power of quantum computation. SIAM Journal on Computing, 26(5):1474--1483, 1997. Earlier version in FOCS'94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. H. U. Simon. An almost optimal PAC algorithm. In Proceedings of the 28th Conference on Learning Theory (COLT), pages 1552--1563, 2015.Google ScholarGoogle Scholar
  74. M. Schuld, I. Sinayskiy, and F. Petruccione. An introduction to quantum machine learning. Contemporary Physics, 56(2):172--185, 2015. arXiv:1409.3097.Google ScholarGoogle ScholarCross RefCross Ref
  75. M. Talagrand. Sharper bounds for Gaussian and empirical processes. The Annals of Probability, pages 28--76, 1994. {Val84} L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134--1142, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability & Its Applications, 16(2):264--280, 1971. English translation of 1968 Russian paper in Dokl. Akad. Nauk. 181(4).Google ScholarGoogle ScholarCross RefCross Ref
  77. V. Vapnik and A. Chervonenkis. Theory of pattern recognition. Nauka, USSR, 1974. In Russian.Google ScholarGoogle Scholar
  78. K. A. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time. In Proceedings of the 3rd Annual Workshop on Computational Learning Theory (COLT'90), pages 314--326, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. P. Wittek. Quantum Machine Learning: What Quantum Computing Means to Data Mining. Elsevier, 2014.Google ScholarGoogle Scholar
  80. N. Wiebe, A. Kapoor, and K. Svore. Quantum deep learning. Quantum Information and Computation, 16(7):541--587, 2016. arXiv:1412.3489.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. N. Wiebe, A. Kapoor, and K. M. Svore. Quantum perceptron models, 2016. arXiv:1602.04799.Google ScholarGoogle Scholar
  82. R. de Wolf. A brief introduction to Fourier analysis on the Boolean cube. Theory of Computing, 2008. ToC Library, Graduate Surveys 1.Google ScholarGoogle Scholar
  83. C. Zhang. An improved lower bound on query complexity for quantum PAC learning. Information Processing Letters, 111(1):40--45, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Guest Column: A Survey of Quantum Learning Theory
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM SIGACT News
          ACM SIGACT News  Volume 48, Issue 2
          June 2017
          91 pages
          ISSN:0163-5700
          DOI:10.1145/3106700
          Issue’s Table of Contents

          Copyright © 2017 Authors

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 12 June 2017

          Check for updates

          Qualifiers

          • column

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader