skip to main content
research-article

Efficient shortest path index maintenance on dynamic road networks with theoretical guarantees

Authors Info & Claims
Published:01 January 2020Publication History
Skip Abstract Section

Abstract

Computing the shortest path between two vertices is a fundamental problem in road networks that is applied in a wide variety of applications. To support efficient shortest path query processing, a plethora of index-based methods have been proposed in the literature, but few of them can support dynamic road networks commonly encountered in practice, as their corresponding index structures cannot be efficiently maintained when the input road network is dynamically updated. Motivated by this, we study the shortest path index maintenance problem on dynamic road networks in this paper. We adopt Contraction Hierarchies (CH) as our underlying shortest path computation method because of its outstanding overall performance in pre-processing time, space cost, and query processing time and aim to design efficient algorithms to maintain the index structure, shortcut index, of CH when the input road network is dynamically updated. To achieve this goal, we propose a shortcut-centric paradigm focusing on exploring a small number of shortcuts to maintain the shortcut index. Following this paradigm, we design an auxiliary data structure named SS-Graph and propose a shortcut weight propagation mechanism based on the SS-Graph. With them, we devise efficient algorithms to maintain the shortcut index in the streaming update and batch update scenarios with non-trivial theoretical guarantees. We experimentally evaluate our algorithms on real road networks and the results demonstrate that our approach achieves 2--3 orders of magnitude speedup compared to the state-of-the-art algorithm for the streaming update.

References

  1. Crowdsourcing Transportation Systems Data, Michigan Department of Transportation. Available at https://www.michigan.gov/documents/mdot/02-14-2015_Crowd_Sourced_Mobile_Applications_483062_7.pdf.Google ScholarGoogle Scholar
  2. https://www.tomtom.com/automotive/products-services/connected-services/tomtom-traffic/.Google ScholarGoogle Scholar
  3. Road traffic injuries. https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries.Google ScholarGoogle Scholar
  4. Statistical Report on Internet Development in China, China Internet Network Information Center. Available at https://cnnic.com.cn/IDR/ReportDownloads/201807/P020180711391069195909.pdf.Google ScholarGoogle Scholar
  5. Taxi and Ridehailing Usage in New York City. https://toddwschneider.com/dashboards/nyc-taxi-ridehailing-uber-lyft-data/.Google ScholarGoogle Scholar
  6. TomTom Real Time Traffic Information, TomTom White Paper. Available at https://www.tomtom.com/lib/img/REAL_TIME_TRAFFIC_WHITEPAPER.pdf.Google ScholarGoogle Scholar
  7. I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck. A hub-based labeling algorithm for shortest paths in road networks. In Proceedings of SEA, pages 230--241, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  8. I. Abraham, D. Delling, A. V. Goldberg, and R. F. F. Werneck. Hierarchical hub labelings for shortest paths. In Proceedings of ESA, pages 24--35, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. T. Akiba, Y. Iwata, K. Kawarabayashi, and Y. Kawata. Fast shortest-path distance queries on road networks by pruned highway labeling. In Proceedings of ALENEX, pages 147--154, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Arz, D. Luxen, and P. Sanders. Transit node routing reconsidered. In Proceedings of SEA, pages 55--66, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  11. H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wagner, and R. F. Werneck. Route planning in transportation networks. In Algorithm engineering, pages 19--80. 2016.Google ScholarGoogle ScholarCross RefCross Ref
  12. H. Bast, S. Funke, and D. Matijevic. Ultrafast shortest-path queries via transit nodes. In Proceedings of DIMACS, The Shortest Path Problem Workshop, pages 175--192, 2006.Google ScholarGoogle Scholar
  13. G. V. Batz, D. Delling, P. Sanders, and C. Vetter. Time-dependent contraction hierarchies. In Proceedings of the Eleventh Workshop on Algorithm Engineering and Experiments, pages 97--105, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  14. G. V. Batz, R. Geisberger, S. Neubauer, and P. Sanders. Time-dependent contraction hierarchies and approximation. In Proceedings of SEA,, pages 166--177, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 36(4), 2015.Google ScholarGoogle Scholar
  16. K. L. Cooke and E. Halsey. The shortest route through a network with time-dependent internodal transit times. Journal of Mathematical Analysis and Applications, 14(3):493--498, 1966.Google ScholarGoogle ScholarCross RefCross Ref
  17. D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable route planning in road networks. Transportation Science, 51(2):566--591, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  18. E. Djikstra. A note on two problems in connection with graphs. Numerische Mathematik, 1:269--271, 1959.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In Proceedings of WEA, pages 319--333, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  20. R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. Exact routing in large road networks using contraction hierarchies. Transportation Science, 46(3):388--404, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. V. Goldberg and C. Harrelson. Computing the shortest path: A search meets graph theory. In Proceedings of SODA, pages 156--165, 2005.Google ScholarGoogle Scholar
  22. M. S. Hassan, W. G. Aref, and A. M. Aly. Graph indexing for shortest-path finding over dynamic sub-graphs. In Proceedings of SIGMOD, pages 1183--1197, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. Jin, N. Ruan, Y. Xiang, and V. Lee. A highway-centric labeling approach for answering distance queries on large sparse graphs. In Proceedings of SIGMOD, pages 445--456, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Jung and S. Pramanik. An efficient path computation model for hierarchically structured topographical road maps. IEEE TKDE, 14(5):1029--1046, 2002.Google ScholarGoogle Scholar
  25. S. C. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and C. D. Zaroliagis. Analysis and experimental evaluation of time-dependent distance oracles. In Proceedings of ALENEX, pages 147--158, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  26. S. C. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wagner, and C. D. Zaroliagis. Engineering oracles for time-dependent road networks. In Proceedings of ALENEX, pages 1--14, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  27. S. C. Kontogiannis, D. Wagner, and C. D. Zaroliagis. Hierarchical oracles for time-dependent networks. CoRR, abs/1502.05222, 2015.Google ScholarGoogle Scholar
  28. H. Li, Y. Ge, R. Hong, and H. Zhu. Point-of-interest recommendations: Learning potential check-ins from friends. In Proceedings of SIGKDD, pages 975--984, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Y. Li, L. H. U, M. L. Yiu, and N. M. Kou. An experimental study on hub labeling based shortest path algorithms. PVLDB, 11(4):445--457, 2017.Google ScholarGoogle Scholar
  30. B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou. Efficient (α, β)-core computation: an index-based approach. In Proceedings of WWW, pages 1130--1141, 2019.Google ScholarGoogle Scholar
  31. Y. Liu, T. Pham, G. Cong, and Q. Yuan. An experimental evaluation of point-of-interest recommendation in location-based social networks. PVLDB, 10(10):1010--1021, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. Ouyang, L. Qin, L. Chang, X. Lin, Y. Zhang, and Q. Zhu. When hierarchy meets 2-hop-labeling: efficient shortest distance queries on road networks. In Proceedings of SIGMOD, pages 709--724, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. D. Ouyang, L. Yuan, F. Zhang, L. Qin, and X. Lin. Towards efficient path skyline computation in bicriteria networks. In Proceedings of International Conference on Database Systems for Advanced Applications, pages 239--254, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. I. Pohl. Bidirectional and heuristic search in path problems. Technical report, 1969.Google ScholarGoogle Scholar
  35. P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path queries. In Proceedings of ESA, pages 568--579, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. A. Sharma, V. Ahsani, and S. R. and. Evaluation of opportunities and challenges of using inrix data for real-time performance monitoring and historical trend assessment (2017). Reports and White Papers. 24. Available at https://lib.dr.iastate.edu/ccee_reports/24.Google ScholarGoogle Scholar
  37. Y. Wang, G. Li, and N. Tang. Querying shortest paths on time dependent road networks. PVLDB, 12(11):1249--1261, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest path and distance queries on road networks: An experimental evaluation. PVLDB, 5(5):406--417, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. X. Wu, L. Yuan, X. Lin, S. Yang, and W. Zhang. Towards efficient k-tripeak decomposition on large graphs. In Proceedings of International Conference on Database Systems for Advanced Applications, pages 604--621, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. G. Xu and Y. Xu. GPS: theory, algorithms and applications. Springer, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  41. L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Diversified top-k clique search. VLDB Journal., 25(2):171--196, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. I/O efficient ECC graph decomposition via graph reduction. PVLDB, 9(7):516--527, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Effective and efficient dynamic graph coloring. PVLDB, 11(3):338--351, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. I/O efficient ECC graph decomposition via graph reduction. VLDB Journal., 26(2):275--300, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. L. Yuan, L. Qin, W. Zhang, L. Chang, and J. Yang. Index-based densest clique percolation community search in networks. IEEE TKDE, 30(5):922--935, 2018.Google ScholarGoogle Scholar
  46. D. Zhang, D. Yang, Y. Wang, K.-L. Tan, J. Cao, and H. T. Shen. Distributed shortest path query processing on dynamic road networks. The VLDB Journal, 26(3):399--419, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. J. Zhang, C. Kamga, H. Gong, and L. Gruenwald. U2 sod-db: a database system to manage large-scale ubiquitous urban sensing origin-destination data. In Proceedings of SIGKDD Workshop on Urban Computing, 2012, pages 163--171, 2012.Google ScholarGoogle Scholar
  48. Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing: Concepts, methodologies, and applications. ACM TIST, 5(3):38:1--38:55, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Y. Zheng, Y. Liu, J. Yuan, and X. Xie. Urban computing with taxicabs. In Proceedings of the 13th ACM International Conference on Ubiquitous Computing, pages 89--98, 2011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest path and distance queries on road networks: towards bridging theory and practice. In Proceedings of SIGMOD, pages 857--868, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Efficient shortest path index maintenance on dynamic road networks with theoretical guarantees
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Proceedings of the VLDB Endowment
      Proceedings of the VLDB Endowment  Volume 13, Issue 5
      January 2020
      195 pages
      ISSN:2150-8097
      Issue’s Table of Contents

      Publisher

      VLDB Endowment

      Publication History

      • Published: 1 January 2020
      Published in pvldb Volume 13, Issue 5

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader